Communication is the connective tissue of society, weaving individuals into groups and communities and mediating the progress and development of culture. The technology of communications evolves continuously, occasionally undergoing paradigm shifts such as those brought about by the Gutenberg press and broadcast television.
From historical examples such as the proliferation of fast merchant trading ships, to the modern telecommunications networks spread across the world via a web of cables buried under the sea floor and satellites thousands of kilometres high, the need for better communication infrastructure has driven some of our most ambitious technologies to date.聽
Today, emerging quantum technologies are poised to revolutionise the field of communication once again. They promise new and incredibly valuable opportunities for dependable and secure communications between people, communities, companies, and governments everywhere. Our ability to understand and control quantum systems has opened a new world of exciting possibilities. Soon we might build long-distance quantum communication links and networks, eventually leading to what is known as the quantum internet.聽
While some embryonic quantum communication systems are already in place, realisation of their full potential will require significant technological advances. With engineering teams around the world working at pace to deliver this promise across industrial sectors, the need to invest in expert knowledge is rising.聽
NASA has been a pioneer in space-based communication over many decades, and more recently has emerged as a leader in space-based quantum communication, dedicating new resources for scientists, engineers and communication systems experts to learn about the field.
Recently, NASA鈥檚 Space Communications and Navigation (SCaN) program commissioned a booklet titled , authored by several of our team at 黑料社. This will be a go-to resource for the global community of scientists and experts that NASA supports, but importantly it has been written so that it requires almost no prior technical knowledge while providing a rigorous account of the emerging field of quantum communications.
What follows is a taster of what鈥檚 in Quantum Communication 101.
For the words I am typing now to reach your computer screen, I need to rely on modern communication networks. My laptop memory, Wi-Fi router and communication channels rely on the physics of things like transistors, currents, and radio waves which obey the more familiar, 鈥渃lassical" laws of physics.聽
The field of quantum communication, however, relies on the counterintuitive rules of quantum physics. Thanks to incredible feats of engineering, in place of continuous beams of light from diodes, we can now control individual photons to send and receive quantum information. By taking advantage of the peculiar quantum phenomena that they exhibit, like superposition and entanglement, new possibilities are emerging which were previously unimaginable.聽
In the growing landscape of potential applications in quantum communication, cybersecurity is already deeply rooted. At 黑料社, for example, quantum computers are used to generate randomness, the fundamental building block of secure encryption. Elsewhere, prototype quantum networks for secure communications already span metropolitan areas.聽
As our techniques in quantum communication advance, we may unlock new possibilities in quantum computing, which promises to solve problems too difficult even for supercomputers, and quantum metrology, which will enable measurements at an unprecedented precision. Quantum states of light have already been used in LIGO - a large-scale experiment operated by CalTech and MIT to detect ripples in the fabric of space-time itself.
The end goal of quantum communication is what many refer to as the quantum internet, through which we will seamlessly send quantum signals across many quantum networks. This will be an enormous engineering challenge, requiring international collaboration and the evolution of our existing infrastructure.
Although the exact form that this network will take is yet unknown, we can say with confidence that it will need to pass through space. Much like satellites help to globally connect the Internet, the launch of quantum-capable satellites will play a vital role in a global quantum internet.聽
The path to a quantum internet will depend on growing a diverse and expert workforce. This is well understood by bodies such as the National Science Foundation who recently announced a $5.1M Center for Quantum Networks aimed at architecting the quantum internet. Over the last few years, we have seen growing investment worldwide, such as the $1.1B Quantum Technology Flagship in Europe and the $11B Chinese National Laboratory for Quantum Information Science. Important industrial investments are being made by large corporations such as IBM, Google, Intel, Honeywell, Cisco, Amazon, and Microsoft.
Amongst this surge in interest, NASA鈥檚 SCaN program has proposed a series of mission concepts for building and testing infrastructure for space-based quantum communication. These include launching satellites capable of sending and receiving quantum signals between ground stations and eventually other satellites.聽These quantum signals may be entangled photons 鈥 a feature that will play an extremely important role in future networks. One such mission concept is shown below, where a quantum-capable satellite with a source of entangled photons connects an intercontinental quantum network.
The second quantum revolution is at an exciting precipice where our ability to transmit quantum information, both on Earth and in space, will be pivotal. Whilst our evolving quantum technologies already show a great deal of promise, it is perhaps the ground-breaking applications that we are yet to discover which will ultimately determine our success.聽
It is more important than ever that we support education and collaboration in advancing quantum technologies. Quantum Communication 101 aims to be a starting point for a general audience looking to learn about the topic for the first time, as well as those who wish to explore in detail the technologies that will make the first quantum networks a reality.
鈥If you would like to better understand the exciting prospects of quantum communication, you can find the Quantum Communication 101 booklet on the NASA SCaN website.聽
黑料社,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 黑料社鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 黑料社 leads the quantum computing revolution across continents.聽
At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 黑料社 Systems. 聽
Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 黑料社 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market. 聽
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
黑料社 delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.