黑料社

Blog

Discover how we are pushing the boundaries in the world of quantum computing

Thank you! Your submission has been received!
Oops! Something went wrong while submitting the form.
technical
All
October 30, 2025
Scalable Quantum Error Detection

Typically, Quantum Error Detection (QED) is viewed as a short-term solution鈥攁 non-scalable, stop-gap until full fault tolerance is achieved at scale.

That鈥檚 just changed, thanks to a serendipitous discovery made by our team. Now, QED can be used in a much wider context than previously thought. Our team made this discovery while studying the contact process, which describes things like how diseases spread or how water permeates porous materials. In particular, our team was studying the quantum contact process (QCP), a problem they had tackled before, which helps physicists understand things like phase transitions. In the process (pun intended), they came across what senior advanced physicist, Eli Chertkov, described as 鈥渁 surprising result.鈥

While examining the problem, the team realized that they could convert detected errors due to noisy hardware into random resets, a key part of the QCP, thus avoiding the exponentially costly overhead of post-selection normally expected in QED.

To understand this better, the team developed a new protocol in which the encoded, or logical, quantum circuit adapts to the noise generated by the quantum computer. They quickly realized that this method could be used to explore other classes of random circuits similar to the ones they were already studying.

The team put it all together on System Model H2 to run a complex simulation, and were surprised to find that they were able to achieve near break-even results, where the logically encoded circuit performed as well as its physical analog, thanks to their clever application of QED. 聽Ultimately, this new protocol will allow QED codes to be used in a scalable way, saving considerable computational resources compared to full quantum error correction (QEC).

Researchers at the crossroads of quantum information, quantum simulation, and many-body physics will take interest in this protocol and use it as a springboard for inventing new use cases for QED.

Stay tuned for more, our team always has new tricks up their sleeves.

Learn mode about System Model H2 with this video:

technical
All
October 23, 2025
Mapping the Hunt for Quantum Advantage

By Konstantinos Meichanetzidis

When will quantum computers outperform classical ones?

This question has hovered over the field for decades, shaping billion-dollar investments and driving scientific debate.

The question has more meaning in context, as the answer depends on the problem at hand. We already have estimates of the quantum computing resources needed for Shor鈥檚 algorithm, which has a superpolynomial advantage for integer factoring over the best-known classical methods, threatening cryptographic protocols. Quantum simulation allows one to glean insights into exotic materials and chemical processes that classical machines struggle to capture, especially when strong correlations are present. But even within these examples, estimates change surprisingly often, carving years off expected timelines. And outside these famous cases, the map to quantum advantage is surprisingly hazy.

Researchers at 黑料社 have taken a fresh step toward drawing this map. In a new theoretical framework, Harry Buhrman, Niklas Galke, and Konstantinos Meichanetzidis introduce the concept of 鈥渜ueasy instances鈥 (quantum easy) 鈥 problem instances that are comparatively easy for quantum computers but appear difficult for classical ones.

From Problem Classes to Problem Instances

Traditionally, computer scientists classify problems according to their worst-case difficulty. Consider the problem of Boolean satisfiability, or SAT, where one is given a set of variables (each can be assigned a 0 or a 1) and a set of constraints and must decide whether there exists a variable assignment that satisfies all the constraints. SAT is a canonical NP-complete problem, and so in the worst case, both classical and quantum algorithms are expected to perform badly, which means that the runtime scales exponentially with the number of variables. On the other hand, factoring is believed to be easier for quantum computers than for classical ones. But real-world computing doesn鈥檛 deal only in worst cases. Some instances of SAT are trivial; others are nightmares. The same is true for optimization problems in finance, chemistry, or logistics. What if quantum computers have an advantage not across all instances, but only for specific 鈥減ockets鈥 of hard instances? This could be very valuable, but worst-case analysis is oblivious to this and declares that there is no quantum advantage.

To make that idea precise, the researchers turned to a tool from theoretical computer science: Kolmogorov complexity. This is a way of measuring how 鈥渞egular鈥 a string of bits is, based on the length of the shortest program that generates it. A simple string like 0000000000 can be described by a tiny program (鈥減rint ten zeros鈥), while the description of a program that generates a random string exhibiting no pattern is as long as the string itself. From there, the notion of instance complexity was developed: instead of asking 鈥渉ow hard is it to describe this string?鈥, we ask 鈥渉ow hard is it to solve this particular problem instance (represented by a string)?鈥 For a given SAT formula, for example, its polynomial-time instance complexity is the size of the smallest program that runs in polynomial time and decides whether the formula is satisfiable. This smallest program must be consistently answering all other instances, and it is also allowed to declare 鈥淚 don鈥檛 know鈥.

In their new work, the team extends this idea into the quantum realm by defining polynomial-time quantum instance complexity as the size of the shortest quantum program that solves a given instance and runs on polynomial time. This makes it possible to directly compare quantum and classical effort, in terms of program description length, on the very same problem instance. If the quantum description is significantly shorter than the classical one, that problem instance is one the researchers call 鈥渜耻别补蝉测鈥: quantum-easy and classically hard. These queasy instances are the precise places where quantum computers offer a provable advantage 鈥 and one that may be overlooked under a worst-case analysis.

Why 鈥淨ueasy鈥?

The playful name captures the imbalance between classical and quantum effort. A queasy instance is one that makes classical algorithms struggle, i.e. their shortest descriptions of efficient programs that decide them are long and unwieldy, while a quantum computer can handle the same instance with a much simpler, faster, and shorter program. In other words, these instances make classical computers 鈥渜ueasy,鈥 while quantum ones solve them efficiently and finding them quantum-easy. The key point of these definitions lies in demonstrating that they yield reasonable results for well-known optimisation problems.

By carefully analysing a mapping from the problem of integer factoring to SAT (which is possible because factoring is inside NP and SAT is NP-complete) the researchers prove that there exist infinitely many queasy SAT instances. SAT is one of the most central and well-studied problems in computer science that finds numerous applications in the real-world. The significant realisation that this theoretical framework highlights is that SAT is not expected to yield a blanket quantum advantage, but within it lie islands of queasiness 鈥 special cases where quantum algorithms decisively win.

Algorithmic Utility

Finding a queasy instance is exciting in itself, but there is more to this story. Surprisingly, within the new framework it is demonstrated that when a quantum algorithm solves a queasy instance, it does much more than solve that single case. Because the program that solves it is so compact, the same program can provably solve an exponentially large set of other instances, as well. Interestingly, the size of this set depends exponentially on the queasiness of the instance!

Think of it like discovering a special shortcut through a maze. Once you鈥檝e found the trick, it doesn鈥檛 just solve that one path, but reveals a pattern that helps you solve many other similarly built mazes, too (even if not optimally). This property is called algorithmic utility, and it means that queasy instances are not isolated curiosities. Each one can open a doorway to a whole corridor with other doors, behind which quantum advantage might lie.

A North Star for the Field

Queasy instances are more than a mathematical curiosity; this is a new framework that provides a language for quantum advantage. Even though the quantities defined in the paper are theoretical, involving Turing machines and viewing programs as abstract bitstrings, they can be approximated in practice by taking an experimental and engineering approach. This work serves as a foundation for pursuing quantum advantage by targeting problem instances and proving that in principle this can be a fruitful endeavour.

The researchers see a parallel with the rise of machine learning. The idea of neural networks existed for decades along with small scale analogue and digital implementations, but only when GPUs enabled large-scale trial and error did they explode into practical use. Quantum computing, they suggest, is on the cusp of its own heuristic era. 鈥净耻谤颈蝉迟颈肠蝉鈥 will be prominent in finding queasy instances, which have the right structure so that classical methods struggle but quantum algorithms can exploit, to eventually arrive at solutions to typical real-world problems. After all, quantum computing is well-suited for small-data big-compute problems, and our framework employs the concepts to quantify that; instance complexity captures both their size and the amount of compute required to solve them.

Most importantly, queasy instances shift the conversation. Instead of asking the broad question of when quantum computers will surpass classical ones, we can now rigorously ask where they do. The queasy framework provides a language and a compass for navigating the rugged and jagged computational landscape, pointing researchers, engineers, and industries toward quantum advantage.

events
All
September 15, 2025
Quantum World Congress 2025

From September 16th 鈥 18th, (QWC) brought together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

黑料社 is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. With our quantum experts were on site, we showcased the latest on 黑料社 Systems, the world鈥檚 highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Highlights from QWC

Dr. Patty Lee Named the Industry Pioneer in Quantum

The Quantum Leadership Awards celebrate visionaries transforming quantum science into global impact. This year at QWC, Dr. Patty Lee, our Chief Scientist for Hardware Technology Development, was named the Industry Pioneer in Quantum! This honor celebrates her more than two decades of leadership in quantum computing and her pivotal role advancing the world鈥檚 leading trapped-ion systems. .

Keynote with 黑料社's CEO,聽Dr. Rajeeb聽Hazra

At QWC 2024, 黑料社鈥檚 President & CEO, Dr. Rajeeb 鈥淩aj鈥 Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, Raj shared the progress we鈥檝e made over the last year in advancing quantum computing on both commercial and technical fronts and exciting insights on what鈥檚 to come from 黑料社. .

Panel Session:聽Policy Priorities for Responsible Quantum and AI

As part of the Track Sessions on Government & Security, 黑料社鈥檚 Director of Government Relations, Ryan McKenney, discussed 鈥淧olicy Priorities for Responsible Quantum and AI鈥 with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat:聽Establishing a Pro-Innovation Regulatory Framework

During the Track Session on Industry Advancement, 黑料社鈥檚 Chief Legal Officer, Kaniah Konkoly-Thege,聽and Director of Government Relations, Ryan McKenney, discussed the importance of 鈥淓stablishing a Pro-Innovation Regulatory Framework鈥.

technical
All
September 15, 2025
Quantum gravity in the lab

In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.

In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of 鈥渟pin fluids鈥, would go on to ignite one of the most surprising and profound connections in modern physics鈥攁 bridge between the strange behavior of quantum materials and the warped spacetime of black holes.

Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holography鈥攖he idea that the universe we live in might be a projection, from a lower-dimensional reality.

Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experience鈥攖he universe filled with galaxies, stars, planets, houses, boulders, and people鈥攊s a hologram, an image of reality coded on a distant two-dimensional surface." 聽

The 鈥淪YK鈥 model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metals鈥攁nd even in black holes. In fact, The SYK model has also been used to study one of physics鈥 true final frontiers, quantum gravity, with the authors of the paper calling it 鈥渁 paradigmatic model for quantum gravity in the lab.鈥 聽

The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.

Now, 10 years after Kitaev鈥檚 watershed lectures, we鈥檝e made new progress in studying the SYK model. In a new paper, . By exploiting our system鈥檚 native high fidelity and all-to-all connectivity, as well as our scientific team鈥檚 deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.

While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).

However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computer鈥攓uantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.

Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.

First, the team adopted a to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.

In addition, the team 鈥渟parsified鈥 the SYK model, which means 鈥減runing鈥 the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.

They didn鈥檛 stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.

As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of science鈥檚 biggest questions.

technical
All
September 9, 2025
Preparation is everything

At 黑料社, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.

A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or 鈥渟tate prep,鈥 is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.

Recently, our algorithm teams have been tackling this challenge from all angles. We鈥檝e published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.

In the , our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.

To do this, our team investigated two different state prep methods. The first method uses , implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.

Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the 鈥渟parse state preparation鈥 scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.

In the , our team focused on state prep for materials simulation. Generally, it鈥檚 much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.

In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.

Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature 鈥 and approaches like this are what will allow us to perform the necessary studies to one day get us there.

Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the , our team made fault-tolerant state preparation鈥攖he critical first step in any fault-tolerant algorithm鈥攔oughly twice as efficient. With our new 鈥渇lag at origin鈥 technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.

The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, we鈥檝e figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.

On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our team鈥檚 work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystem鈥攁nd is quite timely given our recent advances into true fault-tolerance.

This generality isn鈥檛 just applicable to different codes, it鈥檚 also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This 鈥渟tate diversity鈥 is especially valuable when working with the best codes 鈥 codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.

From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.

partnership
All
August 28, 2025
Quantum Computing Joins the Next Frontier in Genomics
  • The Sanger Institute illustrates the value of quantum computing to genomics research
  • 黑料社 supports developments in a field that promises to deliver a profound and positive societal impact

Twenty-five years ago, scientists accomplished a task likened to a biological : the sequencing of the entire human genome.

The Human Genome Project revealed a complete human blueprint comprising around 3 billion base pairs, the chemical building blocks of DNA. It led to breakthrough medical treatments, scientific discoveries, and a new understanding of the biological functions of our body.

Thanks to technological advances in the quarter-century since, what took 13 years and cost $2.7 billion then in under 12 minutes for a few hundred dollars. Improved instruments such as next-generation sequencers and a better understanding of the human genome 鈥 including the availability of a 鈥渞eference genome鈥 鈥 have aided progress, alongside enormous advances in algorithms and computing power.

But even today, some genomic challenges remain so complex that they stretch beyond the capabilities of the most powerful classical computers operating in isolation. This has sparked a bold search for new computational paradigms, and in particular, quantum computing.

Quantum Challenge: Accepted

The is pioneering this new frontier. The program funds research to develop quantum algorithms that can overcome current computational bottlenecks. It aims to test the classical boundaries of computational genetics in the next 3-5 years.

One consortium 鈥 led by the University of Oxford and supported by prestigious partners including the Wellcome Sanger Institute, the Universities of Cambridge, Melbourne, and Kyiv Academic University 鈥 is taking a leading role.

鈥淭he overall goal of the team鈥檚 project is to perform a range of genomic processing tasks for the most complex and variable genomes and sequences 鈥 a task that can go beyond the capabilities of current classical computers鈥 鈥 Wellcome Sanger Institute , July 2025
Selecting 黑料社

Earlier this year, the Sanger Institute selected 黑料社 as a technology partner in their bid to succeed in the Q4Bio challenge.

Our flagship quantum computer, System H2, has for many years led the field of commercially available systems for qubit fidelity and consistently holds the global record for Quantum Volume, currently benchmarked at 8,388,608 (223).

In this collaboration, the scientific research team can take advantage of 黑料社鈥檚 full stack approach to technology development, including hardware, software, and deep expertise in quantum algorithm development.

鈥淲e were honored to be selected by the Sanger Institute to partner in tackling some of the most complex challenges in genomics. By bringing the world鈥檚 highest performing quantum computers to this collaboration, we will help the team push the limits of genomics research with quantum algorithms and open new possibilities for health and medical science.鈥 鈥 Rajeeb Hazra, President and CEO of 黑料社
Quantum for Biology

At the heart of this endeavor, the consortium has announced a bold central mission for the coming year: to encode and process an entire genome using a quantum computer. This achievement would be a potential world-first and provide evidence for quantum computing鈥檚 readiness for tackling real-world use cases.

Their chosen genome, the bacteriophage PhiX174, carries symbolic weight, as its sequencing his second Nobel Prize for Chemistry in 1980. Successfully encoding this genome quantum mechanically would represent a significant milestone for both genomics and quantum computing.

Bacteriophage PhiX174, published under a Creative Commons License https://commons.wikimedia.org/wiki/File:Phi_X_174.png

Sooner than many expect, quantum computing may play an essential role in tackling genomic challenges at the very frontier of human health. The Sanger Institute and 黑料社鈥檚 partnership reminds us that we may soon reach an important step forward in human health research 鈥 one that could change medicine and computational biology as dramatically as the original Human Genome Project did a quarter-century ago.

鈥淨uantum computational biology has long inspired us at 黑料社, as it has the potential to transform global health and empower people everywhere to lead longer, healthier, and more dignified lives.鈥 鈥 Ilyas Khan, Founder and Chief Product Officer of 黑料社

Glossary of terms: Understanding how quantum computing supports complex genomic research


Term Definition
Algorithms
A set of rules or processes for performing calculations or solving computational problems.
Classical Computing Computing technology based on binary information storage (bits represented as 0 or 1).
DNA Sequence The exact order of nucleotides (A, T, C, G) within a DNA molecule.
Genome The complete set of genetic material (DNA) present in an organism.
Graph-based Genome (Sequence Graph) A non-linear network representation of genomic sequences capturing the diversity and relationships among multiple genomes.
High Performance Compute (HPC) Advanced classical computing systems designed for handling computationally intensive tasks, simulations, and data processing.
Pangenome A collection of multiple genome sequences representing genetic diversity within a population or species.
Precision Medicine Tailored medical treatments based on individual genetic, environmental, and lifestyle factors.
黑料社 The world鈥檚 largest quantum computing company, 黑料社 systems lead the world for the rigorous Quantum Volume benchmark and were the first to offer commercial access to highly reliable 鈥淟evel 2 鈥 resilient鈥 quantum computing.
Quantum Bit (Qubit) Basic unit of quantum information, which unlike classical bits, can exist in multiple states simultaneously (superposition).
Quantum Computing Computing approach using quantum-mechanical phenomena (e.g., superposition, entanglement, interference) for enhanced problem-solving capabilities.
Quantum Pangenomics Interdisciplinary field combining quantum computing with genomics to address computational challenges in analyzing genetic data and pangenomes.
Quantum Volume A specific test of a quantum computer鈥檚 performance on complex circuits. The higher the quantum volume the more powerful the system. 黑料社鈥檚 56-qubit System Model H2 achieved a record quantum volume of 8,388,608 in May 2025.
Quantum Superposition A fundamental quantum phenomenon in which particles can simultaneously exist in multiple states, enabling complex computational tasks.
Sequence Mapping Determining how sequences align or correspond within a larger genomic reference or graph.
Wellcome Leap Quantum for Bio (Q4Bio) Initiative funding research combining quantum computing and biological sciences to address computational challenges.
Wellcome Sanger Institute The Sanger Institute tackles some of the most difficult challenges in genomic research.