In the rapidly advancing world of quantum computing, to be a leader means not just keeping pace with innovation but driving it forward. It means setting new standards that shape the future of quantum computing performance. A recent independent comparing 19 quantum processing units (QPUs) on the market today has validated what we鈥檝e long known to be true: 黑料社鈥檚 systems are the undisputed leaders in performance.
The Benchmarking Study
A comprehensive conducted by a joint team from the J眉lich Supercomputing Centre, AIDAS, RWTH Aachen University, and Purdue University compared QPUs from leading companies like IBM, Rigetti, and IonQ, evaluating how well each executed the Quantum Approximate Optimization Algorithm (QAOA), a widely used algorithm that provides a system level measure of performance. After thorough examination, the study concluded that:
鈥...the performance of quantinuum H1-1 and H2-1 is superior to that of the other QPUs.鈥
黑料社 emerged as the clear leader, particularly in full connectivity, the most critical category for solving real-world optimization problems. Full connectivity is a huge comparative advantage, offering and more flexibility in both and . Our dominance in full connectivity鈥攗nattainable for platforms with natively limited connectivity鈥攗nderscores why we are the partner of choice in quantum computing.
Leading Across the Board
We seriously at 黑料社. We lead in nearly every industry benchmark, from best-in-class gate fidelities to a 4000x lead in quantum volume, delivering top performance to our customers.
Our Quantum Charged-coupled Device (QCCD) architecture has been the foundation of our success, delivering consistent performance gains year-over-year. Unlike other architectures, QCCD offers all-to-all connectivity, world-record fidelities, and advanced features like real-time decoding. Altogether, it鈥檚 clear we have superior performance metrics across the board.
While many claim to be the best, we have the data to prove it. This table breaks down industry benchmarks, using the leading commercial spec for each quantum computing architecture.
TABLE 1. Leading commercial spec for each listed architecture or demonstrated capabilities on commercial hardware.
These metrics are the key to our success. They demonstrate why 黑料社 is the only company delivering meaningful results to customers at a scale beyond classical simulation limits.
Our progress builds upon a series of 黑料社鈥檚 technology breakthroughs, including the creation of the most reliable and highest-quality logical qubits, as well as solving the key scalability challenge associated with ion-trap quantum computers 鈥 culminating in a commercial system with greater than 99.9% two-qubit gate fidelity.
From our groundbreaking progress with System Model H2 to advances in quantum teleportation and solving the wiring problem, we鈥檙e taking major steps to tackle the challenges our whole industry faces, like execution speed and circuit depth. Advancements in parallel gate execution, faster ion transport, and high-rate quantum error correction (QEC) are just a few ways we鈥檙e maintaining our lead far ahead of the competition.
This commitment to excellence ensures that we not only meet but exceed expectations, setting the bar for reliability, innovation, and transformative quantum solutions.聽
Onward and Upward
To bring it back to the opening message: to be a leader means not just keeping pace with innovation but driving it forward. It means setting new standards that shape the future of quantum computing performance.
We are just months away from launching 黑料社鈥檚 next generation system, Helios, which will be one trillion times more powerful than H2. By 2027, 黑料社 will launch the industry鈥檚 first 100-logical-qubit system, featuring best-in-class error rates, and we are on track to deliver fault-tolerant computation on hundreds of logical qubits by the end of the decade.聽
The evidence speaks for itself: 黑料社 is setting the standard in quantum computing. Our unrivaled specs, proven performance, and commitment to innovation make us the partner of choice for those serious about unlocking value with quantum computing. 黑料社 is committed to doing the hard work required to continue setting the standard and delivering on our promises. This is 黑料社. This is leadership.
Dr. Chris Langer is a Fellow, a key inventor and architect for the 黑料社 hardware, and serves as an advisor to the CEO.
5 Sales Rodriguez, P., et al. "Experimental demonstration of logical magic state distillation." arXiv, 19 Dec 2024,
6 黑料社. H1 Product Data Sheet. 黑料社,
7 Google Quantum AI. Willow Spec Sheet. Google,
8 Sales Rodriguez, P., et al. "Experimental demonstration of logical magic state distillation." arXiv, 19 Dec 2024,
9 黑料社. H2 Product Data Sheet. 黑料社,
10 Google Quantum AI. Willow Spec Sheet. Google,
11 Sales Rodriguez, P., et al. "Experimental demonstration of logical magic state distillation." arXiv, 19 Dec 2024,
12 Moses, S. A., et al. "A Race-Track Trapped-Ion Quantum Processor." Physical Review X, vol. 13, no. 4, 2023,
13 Google Quantum AI and Collaborators. "Quantum Error Correction Below the Surface Code Threshold." Nature, vol. 638, 2024,
14 Bluvstein, Dolev, et al. "Logical Quantum Processor Based on Reconfigurable Atom Arrays." Nature, vol. 626, 2023,
15 DeCross, Matthew, et al. "The Computational Power of Random Quantum Circuits in Arbitrary Geometries." arXiv, Published on 21 June 2024,
16 Montanez-Barrera, J. A., et al. "Evaluating the Performance of Quantum Process Units at Large Width and Depth." arXiv, 10 Feb. 2025,
17 Evered, Simon J., et al. "High-Fidelity Parallel Entangling Gates on a Neutral-Atom Quantum Computer." Nature, vol. 622, 2023,
18 Ryan-Anderson, C., et al. "Realization of Real-Time Fault-Tolerant Quantum Error Correction." Physical Review X, vol. 11, no. 4, 2021,
19 Carrera Vazquez, Almudena, et al. "Scaling Quantum Computing with Dynamic Circuits." arXiv, 27 Feb. 2024,
20 Moses, S.A.,, et al. "A Race Track Trapped-Ion Quantum Processor." arXiv, 16 May 2023,
21 Garcia Almeida, D., Ferris, K., Knanazawa, N., Johnson, B., Davis, R. "New fractional gates reduce circuit depth for utility-scale workloads." IBM Quantum Blog, IBM, 18 Nov. 2020,
22 Ryan-Anderson, C., et al. "Realization of Real-Time Fault-Tolerant Quantum Error Correction." arXiv, 15 July 2021,
23 Google Quantum AI and Collaborators. 鈥淨uantum error correction below the surface code threshold.鈥 arXiv, 24 Aug. 2024,
About 黑料社
黑料社,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 黑料社鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 黑料社 leads the quantum computing revolution across continents.聽
Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!
If we are to create 鈥榥ext-gen鈥 AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that 黑料社 continues to lead by demonstrating concrete progress 鈥 advancing from theoretical models to real quantum deployment.
The future of AI won't be built on yesterday鈥檚 tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models鈥攄esigned for quantum, from the ground up.
Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we鈥檙e thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.
Why this matters: Quantum AI, born native
This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.
Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap 鈥 but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge. 聽
Achieving that future requires models that are efficient, scalable, and actually run on today鈥檚 quantum hardware.
That鈥檚 what we鈥檝e built.
What makes Quixer different?
Until Quixer, quantum transformers were the result of a brute force 鈥渃opy-paste鈥 approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.
Quixer is different: it鈥檚 not a translation 鈥 it's an innovation.
With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.
As quantum computing advances toward fault tolerance, Quixer is built to scale with it.
What鈥檚 next for Quixer?
We鈥檝e already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.
This is just the beginning.
Looking ahead, we鈥檒l explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.
This milestone isn鈥檛 just about one model. It鈥檚 a signal that the quantum AI era has begun, and that 黑料社 is leading the charge with real results, not empty hype.
Stay tuned. The revolution is only getting started.
Our team is participating in (ISC 2025) from June 10-13 in Hamburg, Germany!
As quantum computing accelerates, so does the urgency to integrate its capabilities into today鈥檚 high-performance computing (HPC) and AI environments. At ISC 2025, meet the 黑料社 team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.
黑料社 is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.
Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2虏鲁 = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by J眉lich Research Centre.
We鈥檝e laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall
From June 10鈥13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what鈥檚 possible across HPC.
Presentations & Demos
Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration鈥攆rom near-term hybrid use cases to hardware innovations and future roadmaps.
Multicore World Networking Event
鈥Monday, June 9 | 7:00pm 鈥 9:00 PM at Hofbr盲u Wirtshaus Esplanade 鈥In partnership with Multicore World, join us for a 黑料社-sponsored Happy Hour to explore the present and future of quantum computing with 黑料社 CCO, Dr. Nash Palaniswamy, and network with our team.
H1 x CUDA-Q Demonstration
鈥All Week at Booth B40 鈥We鈥檙e showcasing a live demonstration of NVIDIA鈥檚 CUDA-Q platform running on 黑料社鈥檚 industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry. 鈥Register for a demo
HPC Solutions Forum
鈥Wednesday, June 11 | 2:20 鈥 2:40 PM 鈥鈥淓nabling Scientific Discovery with Generative Quantum AI鈥 鈥 Presented by Maud Einhorn, Technical Account Executive at 黑料社, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!
Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.
黑料社 has once again raised the bar鈥攕etting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.
Last year, we demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.
Today we鈥檙e building on last year鈥檚 breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% 鈥 up from 97.5% in last year鈥檚 result. What鈥檚 more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.
Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the 黑料社's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.
This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.
Teleportation schemes like this allow us to 鈥渢rade space for time,鈥 meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.
This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. 黑料社 continues to lead in quantum hardware performance, algorithms, and error correction鈥攁nd we鈥檒l extend our leadership come the launch of our next generation system, Helios, in just a matter of months.