For a novel technology to be successful, it must prove that it is both useful and works as described.
Checking that our computers 鈥渨ork as described鈥 is called benchmarking and verification by the experts. We are proud to be leaders in this field, with the . We also work with National Laboratories in various countries to develop new benchmarking techniques and standards. Additionally, we have our own team of experts leading the field in benchmarking and verification.
Currently, a lot of verification (i.e. checking that you got the right answer) is done by classical computers 鈥 most quantum processors can still be simulated by a classical computer. As we move towards quantum processors that are hard (or impossible) to simulate, this introduces a problem: how can we keep checking that our technology is working correctly without simulating it?
We recently partnered with the UK鈥檚 Quantum Software Lab to develop a novel and scalable verification and benchmarking protocol that will help us as we make the transition to quantum processors that cannot be simulated.
This new protocol does not require classical simulation, or the transfer of a qubit between two parties. The team鈥檚 鈥渙n-chip鈥 verification protocol eliminates the need for a physically separated verifier and makes no assumptions about the processor鈥檚 noise. To top it all off, this new protocol is qubit-efficient.
The team鈥檚 protocol is application-agnostic, benefiting all users. Further, the protocol is optimized to our QCCD hardware, meaning that we have a path towards verified quantum advantage 鈥 as we compute more things that cannot be classically simulated, we will be able to check that what we are doing is right.
Running the protocol on 黑料社 System Model H1, the team ended up performing the largest verified Measurement Based Quantum Computing (MBQC) circuit to date. This was enabled by our System Model H1鈥檚 low cross-talk gate zones, mid-circuit measurement and reset, and long coherence times. By performing the largest verified MBQC computation to date, and by verifying computations significantly larger than any others to be verified before, we reaffirm the 黑料社 Systems as best-in-class.
黑料社,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 黑料社鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 黑料社 leads the quantum computing revolution across continents.聽
At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).
GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.
Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.
One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.
The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.
That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.
Here's how it works:
To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.
To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.
The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.
By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.
This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.
Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 黑料社 Systems. 聽
Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 黑料社 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽
"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.
To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.
While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.
Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽
In our increasingly connected, data-driven world, cybersecurity threats are more frequent and sophisticated than ever. To safeguard modern life, government and business leaders are turning to quantum randomness.
The term to know: quantum random number generators (QRNGs).
QRNGs exploit quantum mechanics to generate truly random numbers, providing the highest level of cryptographic security. This supports, among many things:
Quantum technologies, including QRNGs, could protect up to $1 trillion in digital assets annually, according to a recent by the World Economic Forum and Accenture.
The World Economic Forum report identifies five industry groups where QRNGs offer high business value and clear commercialization potential within the next few years. Those include:
In line with these trends, recent by The Quantum Insider projects the quantum security market will grow from approximately $0.7 billion today to $10 billion by 2030.
Quantum randomness is already being deployed commercially:
Recognizing the value of QRNGs, the financial services sector is accelerating its path to commercialization.
On the basis of the latter achievement, we aim to broaden our cybersecurity portfolio with the addition of a certified randomness product in 2025.
The National Institute of Standards and Technology (NIST) defines the cryptographic regulations used in the U.S. and other countries.
This week, we announced Quantum Origin received , marking the first software QRNG approved for use in regulated industries.
This means Quantum Origin is now available for high-security cryptographic systems and integrates seamlessly with NIST-approved solutions without requiring recertification.
The NIST validation, combined with our peer-reviewed papers, further establishes Quantum Origin as the leading QRNG on the market. 聽
--
It is paramount for governments, commercial enterprises, and critical infrastructure to stay ahead of evolving cybersecurity threats to maintain societal and economic security.
黑料社 delivers the highest quality quantum randomness, enabling our customers to confront the most advanced cybersecurity challenges present today.