黑料社

黑料社 and Google DeepMind Unveil the Reality of the Symbiotic Relationship Between Quantum and AI

March 27, 2025

The marriage of AI and quantum computing is going to have a widespread and meaningful impact in many aspects of our lives, combining the strengths of both fields to tackle complex problems.

Quantum and AI are the ideal partners. At 黑料社, we are developing tools to accelerate AI with quantum computers, and quantum computers with AI. According to recent independent analysis, our quantum computers are the world鈥檚 most powerful, enabling state-of-the-art approaches like Generative Quantum AI (Gen QAI), where we train classical AI models with data generated from a quantum computer.

We harness AI methods to accelerate the development and performance of our full quantum computing stack as opposed to simply theorizing from the sidelines. A paper in Nature Machine Intelligence reveals the results of a recent collaboration between 黑料社 and Google DeepMind to tackle the hard problem of quantum compilation.

The work shows a classical AI model supporting quantum computing by demonstrating its potential for quantum circuit optimization. An AI approach like this has the potential to lead to more effective control at the hardware level, to a richer suite of middleware tools for quantum circuit compilation, error mitigation and correction, even to novel high-level quantum software primitives and quantum algorithms.

An AI power-up for circuit optimization

The joint 黑料社-Google DeepMind team of researchers tackled one of quantum computing鈥檚 most pressing challenges: minimizing the number of highly expensive but essential T-gates required for universal quantum computation. This is important specifically for the fault-tolerant regime, which is becoming increasingly relevant as quantum error correction protocols are being explored on rapidly developing quantum hardware. The joint team of researchers adapted AlphaTensor, Google DeepMind鈥檚 reinforcement learning AI system for algorithm discovery, which was introduced to improve the efficiency of linear algebra computations. The team introduced AlphaTensor-Quantum, which takes as input a quantum circuit and returns a new, more efficient one in terms of number of T-gates, with exactly the same functionality!

AlphaTensor-Quantum outperformed current state-of-the art optimization methods and matched the best human-designed solutions across multiple circuits in a thoroughly curated set of circuits, chosen for their prevalence in many applications, from quantum arithmetic to quantum chemistry. This breakthrough shows the potential for AI to automate the process of finding the most efficient quantum circuit. This is the first time that such an AI model has been put to the problem of T-count reduction at such a large scale.

A quantum power-up for machine learning

The symbiotic relationship between quantum and AI works both ways. When AI and quantum computing work together, quantum computers could dramatically accelerate machine learning algorithms, whether by the development and application of natively quantum algorithms, or by offering quantum-generated training data that can be used to train a classical AI model.

Our recent announcement about Generative Quantum AI (Gen QAI) spells out our commitment to unlocking the value of the data generated by our H2 quantum computer. This value arises from the world鈥檚 leading fidelity and computational power of our System Model H2, making it impossible to exactly simulate on any classical computer, and therefore the data it generates 鈥 that we can use to train AI 鈥 is inaccessible by any other means. 黑料社鈥檚 Chief Scientist for Algorithms and Innovation, Prof. Harry Buhrman, has likened accessing the first truly quantum-generated training data to the invention of the modern microscope in the seventeenth century, which revealed an entirely new world of tiny organisms thriving unseen within a single drop of water.

Recently, we announced a wide-ranging partnership with NVIDIA. It charts a course to commercial scale applications arising from the partnership between high-performance classical computers, powerful AI systems, and quantum computers that breach the boundaries of what previously could and could not be done. Our President & CEO, Dr. Raj Hazra spoke to CNBC recently about our partnership. Watch the video here.

As we prepare for the next stage of quantum processor development, with the launch of our Helios system in 2025, we鈥檙e excited to see how AI can help write more efficient code for quantum computers 鈥 and how our quantum processors, the most powerful in the world, can provide a backend for AI computations.

As in any truly symbiotic relationship, the addition of AI to quantum computing equally benefits both sides of the equation.

To read more about 黑料社 and Google DeepMind鈥檚 collaboration, please read the scientific paper .

About 黑料社

黑料社,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 黑料社鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 黑料社 leads the quantum computing revolution across continents.聽

Blog
July 3, 2025
We鈥檙e taking a transformational approach to quantum computing

Our quantum algorithms team has been hard at work exploring solutions to continually optimize our system鈥檚 performance. Recently, they鈥檝e invented a novel technique, called the , that can offer significant resource savings in future applications.

The transform takes complex representations and makes them simple, by transforming into a different 鈥渂asis鈥. This is like looking at a cube from one angle, then rotating it and seeing just a square, instead. Transformations like this save resources because the more complex your problem looks, the more expensive it is to represent and manipulate on qubits.

You鈥檝e changed

While it might sound like magic, transforms are a commonly used tool in science and engineering. Transforms simplify problems by reshaping them into something that is easier to deal with, or that provides a new perspective on the situation. For example, sound engineers use Fourier transforms every day to look at complex musical pieces in terms of their frequency components. Electrical engineers use Laplace transforms; people who work in image processing use the Abel transform; physicists use the Legendre transform, and so on.

In a new paper outlining the necessary tools to implement the QPT, Dr. Nathan Fitzpatrick and Mr. J臋drzej Burkat explain how the QPT will be widely applicable in quantum computing simulations, spanning areas like molecular chemistry, materials science, and semiconductor physics. The paper also describes how the algorithm can lead to significant resource savings by offering quantum programmers a more efficient way of representing problems on qubits.

Symmetry is key

The efficiency of the QPT stems from its use of one of the most profound findings in the field of physics: that symmetries drive the properties of a system.

While the average person can 鈥渁ppreciate鈥 symmetry, for example in design or aesthetics, physicists understand symmetry as a much more profound element present in the fabric of reality. Symmetries are like the universe鈥檚 DNA; they lead to conservation laws, which are the most immutable truths we know.

Back in the 1920鈥檚, when women were largely prohibited from practicing physics, one of the great mathematicians of the century, Emmy Noether, turned her attention to the field when she was tasked with helping Einstein with his work. In her attempt to solve a problem Einstein had encountered, Dr. Noether realized that all the most powerful and fundamental laws of physics, such as 鈥渆nergy can neither be created nor destroyed鈥 are in fact the consequence of a deep simplicity 鈥 symmetry 鈥 hiding behind the curtains of reality. Dr. Noether鈥檚 theorem would have a profound effect on the trajectory of physics.

In addition to the many direct consequences of Noether鈥檚 theorem is a longstanding tradition amongst physicists to treat symmetry thoughtfully. Because of its role in the fabric of our universe, carefully considering the symmetries of a system often leads to invaluable insights.

Einstein, Pauli and Noether walk into a bar...

Many of the systems we are interested in simulating with quantum computers are, at their heart, systems of electrons. Whether we are looking at how electrons move in a paired dance inside superconductors, or how they form orbitals and bonds in a chemical system, the motion of electrons are at the core.

Seven years after Noether published her blockbuster results, Wolfgang Pauli made waves when he published the work describing his Pauli exclusion principle, which relies heavily on symmetry to explain basic tenets of quantum theory. Pauli鈥檚 principle has enormous consequences; for starters, describing how the objects we interact with every day are solid even though atoms are mostly empty space, and outlining the rules of bonds, orbitals, and all of chemistry, among other things.

Symmetry in motion

It is Pauli's symmetry, coupled with a deep respect for the impact of symmetry, that led our team at 黑料社 to the discovery published today.

In their work, they considered the act of designing quantum algorithms, and how one鈥檚 design choices may lead to efficiency or inefficiency.

When you design quantum algorithms, there are many choices you can make that affect the final result. Extensive work goes into optimizing each individual step in an algorithm, requiring a cyclical process of determining subroutine improvements, and finally, bringing it all together. The significant cost and time required is a limiting factor in optimizing many algorithms of interest.

This is again where symmetry comes into play. The authors realized that by better exploiting the deepest symmetries of the problem, they could make the entire edifice more efficient, from state preparation to readout. Over the course of a few years, a team lead Dr. Fitzpatrick and his colleague J臋drzej Burkat slowly polished their approach into a full algorithm for performing the QPT.

The QPT functions by using Pauli鈥檚 symmetry to discard unimportant details and strip the problem down to its bare essentials. Starting with a Paldus transform allows the algorithm designer to enjoy knock-on effects throughout the entire structure, making it overall more efficient to run.

鈥淚t鈥檚 amazing to think how something we discovered one hundred years ago is making quantum computing easier and more efficient,鈥 said Dr. Nathan Fitzpatrick.

Ultimately, this innovation will lead to more efficient quantum simulation. Projects we believed to still be many years out can now be realized in the near term.

Transforming the future

The discovery of the Quantum Paldus Transform is a powerful reminder that enduring ideas鈥攍ike symmetry鈥攃ontinue to shape the frontiers of science. By reaching back into the fundamental principles laid down by pioneers like Noether and Pauli, and combining them with modern quantum algorithm design, Dr. Fitzpatrick and Mr. Burkat have uncovered a tool with the potential to reshape how we approach quantum computation.

As quantum technologies continue their crossover from theoretical promise to practical implementation, innovations like this will be key in unlocking their full potential.

technical
All
Blog
July 2, 2025
Cracking the code of superconductors: Quantum computers just got closer to the dream

, we've made a major breakthrough in one of quantum computing鈥檚 most elusive promises: simulating the physics of superconductors. A deeper understanding of superconductivity would have an enormous impact: greater insight could pave the way to real-world advances, like phone batteries that last for months, 鈥渓ossless鈥 power grids that drastically reduce your bills, or MRI machines that are widely available and cheap to use. 聽The development of room-temperature superconductors would transform the global economy.

A key promise of quantum computing is that it has a natural advantage when studying inherently quantum systems, like superconductors. In many ways, it is precisely the deeply 鈥榪uantum鈥 nature of superconductivity that makes it both so transformative and so notoriously difficult to study.

Now, we are pleased to report that we just got a lot closer to that ultimate dream.

Making the impossible possible

To study something like a superconductor with a quantum computer, you need to first 鈥渆ncode鈥 the elements of the system you want to study onto the qubits 鈥 in other words, you want to translate the essential features of your material onto the states and gates you will run on the computer.

For superconductors in particular, you want to encode the behavior of particles known as 鈥渇ermions鈥 (like the familiar electron). Naively simulating fermions using qubits will result in garbage data, because qubits alone lack the key properties that make a fermion so unique.

Until recently, scientists used something called the 鈥淛ordan-Wigner鈥 encoding to properly map fermions onto qubits. People have argued that the Jordan-Wigner encoding is one of the main reasons fermionic simulations have not progressed beyond simple one-dimensional chain geometries: it requires too many gates as the system size grows. 聽

Even worse, the Jordan-Wigner encoding has the nasty property that it is, in a sense, maximally non-fault-tolerant: one error occurring anywhere in the system affects the whole state, which generally leads to an exponential overhead in the number of shots required. Due to this, until now, simulating relevant systems at scale 鈥 one of the big promises of quantum computing 鈥 has remained a daunting challenge.

Theorists have addressed the issues of the Jordan-Wigner encoding and have suggested alternative fermionic encodings. In practice, however, the circuits created from these alternative encodings come with large overheads and have so far not been practically useful.

We are happy to report that our team developed a new way to compile one of the new, alternative, encodings that dramatically improves both efficiency and accuracy, overcoming the limitations of older approaches. Their new compilation scheme is the most efficient yet, slashing the cost of simulating fermionic hopping by an impressive 42%. On top of that, the team also introduced new, targeted error mitigation techniques that ensure even larger systems can be simulated with far fewer computational "shots"鈥攁 critical advantage in quantum computing.

Using their innovative methods, the team was able to simulate the Fermi-Hubbard model鈥攁 cornerstone of condensed matter physics鈥 at a previously unattainable scale. By encoding 36 fermionic modes into 48 physical qubits on System Model H2, they achieved the largest quantum simulation of this model to date.

This marks an important milestone in quantum computing: it demonstrates that large-scale simulations of complex quantum systems, like superconductors, are now within reach.

Unlocking the Quantum Age, One Breakthrough at a Time

This breakthrough doesn鈥檛 just show how we can push the boundaries of what quantum computers can do; it brings one of the most exciting use cases of quantum computing much closer to reality. With this new approach, scientists can soon begin to simulate materials and systems that were once thought too complex for the most powerful classical computers alone. And in doing so, they鈥檝e unlocked a path to potentially solving one of the most exciting and valuable problems in science and technology: understanding and harnessing the power of superconductivity.

The future of quantum computing鈥攁nd with it, the future of energy, electronics, and beyond鈥攋ust got a lot more exciting.

technical
All
Blog
July 1, 2025
黑料社 with partners Princeton and NIST deliver seminal result in quantum error correction

, we鈥檝e just delivered a crucial result in Quantum Error Correction (QEC), demonstrating key principles of scalable quantum computing developed by Drs Peter Shor, Dorit Aharonov, and Michael Ben-Or. we showed that by using 鈥渃oncatenated codes鈥 noise can be exponentially suppressed 鈥 proving that quantum computing will scale.

When noise is low enough, the results are transformative

Quantum computing is already producing results, but high-profile applications like Shor鈥檚 algorithm鈥攚hich can break RSA encryption鈥攔equire error rates about a billion times lower than what today鈥檚 machines can achieve.

Achieving such low error rates is a holy grail of quantum computing. Peter Shor was the first to hypothesize a way forward, in the form of quantum error correction. Building on his results, Dorit Aharanov and Michael Ben-Or proved that by concatenating quantum error correcting codes, a sufficiently high-quality quantum computer can suppress error rates arbitrarily at the cost of a very modest increase in the required number of qubits. 聽Without that insight, building a truly fault-tolerant quantum computer would be impossible.

Their results, now widely referred to as the 鈥渢hreshold theorem鈥, laid the foundation for realizing fault-tolerant quantum computing. At the time, many doubted that the error rates required for large-scale quantum algorithms could ever be achieved in practice. The threshold theorem made clear that large scale quantum computing is a realistic possibility, giving birth to the robust quantum industry that exists today.

Realizing a legendary vision

Until now, nobody has realized the original vision for the threshold theorem. Last year, in a different context (without concatenated codes). This year, we are proud to report the first experimental realization of that seminal work鈥攄emonstrating fault-tolerant quantum computing using concatenated codes, just as they envisioned.

The benefits of concatenation

The team demonstrated that their family of protocols achieves high error thresholds鈥攎aking them easier to implement鈥攚hile requiring minimal ancilla qubits, meaning lower overall qubit overhead. Remarkably, their protocols are so efficient that fault-tolerant preparation of basis states requires zero ancilla overhead, making the process maximally efficient.

This approach to error correction has the potential to significantly reduce qubit requirements across multiple areas, from state preparation to the broader QEC infrastructure. Additionally, concatenated codes offer greater design flexibility, which makes them especially attractive. Taken together, these advantages suggest that concatenation could provide a faster and more practical path to fault-tolerant quantum computing than popular approaches like the .

We鈥檙e always looking forward

From a broader perspective, this achievement highlights the power of collaboration between industry, academia, and national laboratories. 黑料社鈥檚 commercial quantum systems are so stable and reliable that our partners were able to carry out this groundbreaking research remotely鈥攐ver the cloud鈥攚ithout needing detailed knowledge of the hardware. While we very much look forward to welcoming them to our labs before long, its notable that they never need to step inside to harness the full capabilities of our machines.

As we make quantum computing more accessible, the rate of innovation will only increase. The era of plug-and-play quantum computing has arrived. Are you ready?

technical
All