şÚÁĎÉç

şÚÁĎÉç extends its significant lead in quantum computing, achieving historic milestones for hardware fidelity and Quantum Volume

April 16, 2024

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management

All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9's” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.

That day has now arrived. Building on several previous laboratory demonstrations , şÚÁĎÉç has become the first company ever to achieve “three 9's” in a commercially-available quantum computer, with the first demonstration of 99.914(3)% 2-qubit gate fidelity, showing repeatable performance across all qubit pairs on our H1-1 system that is constantly available to customers. This production-environment announcement is a marked difference to one-offs recorded in carefully contrived laboratory conditions. This demonstrates what will fast become the expected standard for the entire quantum computing sector.

şÚÁĎÉç is also announcing another milestone, a seven-figure Quantum Volume (QV) of 1,048,576 – or in terms preferred by the experts, 220 – reinforcing our commitment to building, by a significant margin, the highest-performing quantum computers in the world.

These announcements follow a historic month that started when we proved our ability to scale our systems to the sizes needed to solve some of the world’s most pressing problems – and in a way that offers the best path to universal quantum computing.Ěý 

On March 5th, 2024, şÚÁĎÉç researchers disclosed details of our experiments that provide a solution to a totemic problem faced by all quantum computing architectures, known as the wiring problem. Supported by a video showing qubits being shuffled through a 2-dimensional grid ion-trap, our team presented concrete proof of the scalability of the quantum charge-coupled device (QCCD) architecture used in our H-Series quantum computers.Ěý

Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.

On April 3rd, 2024 in partnership with Microsoft, our teams announced a breakthrough in quantum error correction that delivered as its crowning achievement the most reliable logical qubits on record.

We revealed detailed demonstrations in an of the reliability achieved via 4 logical qubits encoded into just 30 physical qubits on our System Model H2 quantum computer. Our joint teams were able to demonstrate logical circuit error rates far below physical circuit error rates, a capability that our full-stack quantum computer is currently the only one in the world with the fidelity required to achieve.Ěý

Explaining the importance of 2-qubit gate fidelity

Reaching this level of physical fidelity is not optional for commercial scale computers – it is essential for error correction to work, and that in turn is a necessary foundation for any useful quantum computer. Our record two-qubit gate fidelity of 99.914(3)% marks a symbolic inflection point for the industry: at ”three 9's” fidelity, we are nearing or surpassing the break-even point (where logical qubits outperform physical qubits) for many quantum error correction protocols, and this will generate great interest among research and industrial teams exploring fault-tolerant methods for tackling real-world problems.

Without hardware fidelity this good, error-corrected calculations are noisier than un-corrected computations. This is why we call it a “threshold” – when gate errors are “above threshold”, quantum computers will remain noisy no matter what you do. Below threshold, you can use quantum error correction to push error rates way, way down, so that quantum computers eventually become as reliable as classical computers.Ěý 

Four years ago, şÚÁĎÉç claimed that it would improve the performance of its H-Series quantum computers by 10x each year for five years, when measured by the industry’s most widely recognized benchmark, QV (an industry standard not to be confused with less comprehensive metrics such as Algorithmic Qubits).Ěý

Today’s achievement of a 220 QV – which as with all our demonstrations was achieved on our commercially-available machine – shows that our team is living up to this audacious commitment. We are completely confident we can continue to overcome the technical problems that stand in the way of even better fidelity and QV performance. Our QV data is , as are

The combination of high QV and gate fidelities puts the şÚÁĎÉç system in a class by-itself – it is far and away the best of any commercially-available quantum computer.

A diagram of a circuitDescription automatically generated
Figure 1: Quantum Volume (QV) heavy output probability (HOP) as a function of time-ordered circuit index. The solid blue line shows the cumulative average while the green region shows the two-sigma confidence interval based on bootstrap resampling. A QV test is passed when the lower two-sigma confidence interval crosses 2/3.
A graph with numbers and a lineDescription automatically generated
Figure 2. Quantum volume vs time for our commercial systems. şÚÁĎÉç’s new world record quantum volume of 1,048,576 maintains our self-imposed goal of a 10-fold increase each year. In fact, in 2023 we achieved an overall increase in quantum volume of >100x.
A graph with a line and numbersDescription automatically generated with medium confidence
Figure 3. Two-qubit randomized benchmarking data from H1-1 across the five gate zones (dashed lines) and average over all five gate zones (solid blue line). The survival probability decays as a function of sequence length, which can be related to the average fidelity of the two-qubit gates with standard randomized benchmarking theory. With this data, we can claim that not only are all zones consistent with 99.9, but all zones are >99.9 outside of error bars.
‍QCCD: the path to fault tolerance

Additionally, and notably, these benchmarks were achieved “inherently”, without error mitigation, thanks to the H Series’ all-to-all connectivity and QCCD architecture. Full connectivity results in less errors when running large, complicated circuits. While other modalities depend on error mitigation techniques, such techniques are not scalable and present only a modest near-term value.Ěý

Lower physical error and high connectivity means our quantum computers have a provably lower overhead for error-corrected computation.

Looking more deeply, experts look for high fidelities that are valid in all operating zones and between any pair of qubits. In contrast to our competitors, this is precisely what our H Series delivers. We do not suffer from a broad distribution of gate fidelities between different pairs of qubits, meaning that some pairs of qubits have significantly lower fidelities. şÚÁĎÉç is the only quantum computing company with all qubit pairs boasting above 99.9% fidelity.

Alongside these benefits and demonstrations of scalability, fidelity, connectivity, and reliability, it is worth noting how these features impact what arguably matters the most to users – time to solution. In the QCCD architecture, speed of operations is decoupled from speed to reach a computational solution thanks to a combination of:

  • a better signal to noise ratio than other modalities
  • drastically reducing or eliminating the number of swap gates required (because we can move our ions through space), and
  • reducing the number of trials required for an accurate result.

The net effect is that for increasingly complex circuits it takes a high-fidelity QCCD-type quantum computer less time to achieve accurate results than other 2D connected or lower-fidelity architectures.

“Getting to three 9’s in the QCCD architecture means that ~1000 entangling operations can be done before an error occurs. Our quantum computers are right at the edge of being able to do computations at the physical level that are beyond the reach of classical computers, which would occur somewhere between 3 nines and 4 nines. Some tasks become hard for classical computers before this regime (e.g. Google’s random circuit sampling problem) but this new regime allows for much less contrived problems to be solved. At that point, these machines become real tools for new discoveries – albeit they will still be limited in what they can probe, likely to be physics simulations or closely related problems,” said Dave Hayes, a Senior R&D manager at şÚÁĎÉç.

“Additionally, these fidelities put us, some would say comfortably, within the regime needed to build fault-tolerant machines. These fidelities allow us to start adding more qubits without needing to improve performance further, and to take advantage of quantum error correction to improve the computational power necessary for tackling truly large problems. This scaling problem gets easier with even better fidelities (which is why we’re not satisfied with 3 nines) but it is possible in principle.”

şÚÁĎÉç’s new records in fidelity and quantum volume on our commercial H1 device are expected to be achieved on the H2, once upgrades are implemented, underscoring the value that we offer to users for whom stability, reliability and robust performance are pre-requisites. The quantum computing landscape is complex and changing, but we remain at the head of the pack in all key metrics. The relationship with our world-class applications teams means that co-designed devices for solving some of the world’s most intractable problems are a big step closer to reality.

şÚÁĎÉç is the world’s leading quantum computing company, and our world-class scientists and engineers are continually driving our technology forward while expanding the possibilities for our users. Their work on applications includes cybersecurity, quantum chemistry, quantum Monte Carlo integration, quantum topological data analysis, condensed matter physics, high energy physics, quantum machine learning, and natural language processing – and we are privileged to support them to bring new solutions to bear on some of the greatest challenges we face.

About şÚÁĎÉç

şÚÁĎÉç, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. şÚÁĎÉç’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, şÚÁĎÉç leads the quantum computing revolution across continents.Ěý

Blog
October 30, 2025
Scalable Quantum Error Detection

Typically, Quantum Error Detection (QED) is viewed as a short-term solution—a non-scalable, stop-gap until full fault tolerance is achieved at scale.

That’s just changed, thanks to a serendipitous discovery made by our team. Now, QED can be used in a much wider context than previously thought. Our team made this discovery while studying the contact process, which describes things like how diseases spread or how water permeates porous materials. In particular, our team was studying the quantum contact process (QCP), a problem they had tackled before, which helps physicists understand things like phase transitions. In the process (pun intended), they came across what senior advanced physicist, Eli Chertkov, described as “a surprising result.”

While examining the problem, the team realized that they could convert detected errors due to noisy hardware into random resets, a key part of the QCP, thus avoiding the exponentially costly overhead of post-selection normally expected in QED.

To understand this better, the team developed a new protocol in which the encoded, or logical, quantum circuit adapts to the noise generated by the quantum computer. They quickly realized that this method could be used to explore other classes of random circuits similar to the ones they were already studying.

The team put it all together on System Model H2 to run a complex simulation, and were surprised to find that they were able to achieve near break-even results, where the logically encoded circuit performed as well as its physical analog, thanks to their clever application of QED.  Ultimately, this new protocol will allow QED codes to be used in a scalable way, saving considerable computational resources compared to full quantum error correction (QEC).

Researchers at the crossroads of quantum information, quantum simulation, and many-body physics will take interest in this protocol and use it as a springboard for inventing new use cases for QED.

Stay tuned for more, our team always has new tricks up their sleeves.

Learn mode about System Model H2 with this video:

technical
All
Blog
October 23, 2025
Mapping the Hunt for Quantum Advantage

By Konstantinos Meichanetzidis

When will quantum computers outperform classical ones?

This question has hovered over the field for decades, shaping billion-dollar investments and driving scientific debate.

The question has more meaning in context, as the answer depends on the problem at hand. We already have estimates of the quantum computing resources needed for Shor’s algorithm, which has a superpolynomial advantage for integer factoring over the best-known classical methods, threatening cryptographic protocols. Quantum simulation allows one to glean insights into exotic materials and chemical processes that classical machines struggle to capture, especially when strong correlations are present. But even within these examples, estimates change surprisingly often, carving years off expected timelines. And outside these famous cases, the map to quantum advantage is surprisingly hazy.

Researchers at şÚÁĎÉç have taken a fresh step toward drawing this map. In a new theoretical framework, Harry Buhrman, Niklas Galke, and Konstantinos Meichanetzidis introduce the concept of “queasy instances” (quantum easy) – problem instances that are comparatively easy for quantum computers but appear difficult for classical ones.

From Problem Classes to Problem Instances

Traditionally, computer scientists classify problems according to their worst-case difficulty. Consider the problem of Boolean satisfiability, or SAT, where one is given a set of variables (each can be assigned a 0 or a 1) and a set of constraints and must decide whether there exists a variable assignment that satisfies all the constraints. SAT is a canonical NP-complete problem, and so in the worst case, both classical and quantum algorithms are expected to perform badly, which means that the runtime scales exponentially with the number of variables. On the other hand, factoring is believed to be easier for quantum computers than for classical ones. But real-world computing doesn’t deal only in worst cases. Some instances of SAT are trivial; others are nightmares. The same is true for optimization problems in finance, chemistry, or logistics. What if quantum computers have an advantage not across all instances, but only for specific “pockets” of hard instances? This could be very valuable, but worst-case analysis is oblivious to this and declares that there is no quantum advantage.

To make that idea precise, the researchers turned to a tool from theoretical computer science: Kolmogorov complexity. This is a way of measuring how “regular” a string of bits is, based on the length of the shortest program that generates it. A simple string like 0000000000 can be described by a tiny program (“print ten zeros”), while the description of a program that generates a random string exhibiting no pattern is as long as the string itself. From there, the notion of instance complexity was developed: instead of asking “how hard is it to describe this string?”, we ask “how hard is it to solve this particular problem instance (represented by a string)?” For a given SAT formula, for example, its polynomial-time instance complexity is the size of the smallest program that runs in polynomial time and decides whether the formula is satisfiable. This smallest program must be consistently answering all other instances, and it is also allowed to declare “I don’t know”.

In their new work, the team extends this idea into the quantum realm by defining polynomial-time quantum instance complexity as the size of the shortest quantum program that solves a given instance and runs on polynomial time. This makes it possible to directly compare quantum and classical effort, in terms of program description length, on the very same problem instance. If the quantum description is significantly shorter than the classical one, that problem instance is one the researchers call “qłÜ±đ˛ą˛ő˛â”: quantum-easy and classically hard. These queasy instances are the precise places where quantum computers offer a provable advantage – and one that may be overlooked under a worst-case analysis.

Why “Queasy”?

The playful name captures the imbalance between classical and quantum effort. A queasy instance is one that makes classical algorithms struggle, i.e. their shortest descriptions of efficient programs that decide them are long and unwieldy, while a quantum computer can handle the same instance with a much simpler, faster, and shorter program. In other words, these instances make classical computers “queasy,” while quantum ones solve them efficiently and finding them quantum-easy. The key point of these definitions lies in demonstrating that they yield reasonable results for well-known optimisation problems.

By carefully analysing a mapping from the problem of integer factoring to SAT (which is possible because factoring is inside NP and SAT is NP-complete) the researchers prove that there exist infinitely many queasy SAT instances. SAT is one of the most central and well-studied problems in computer science that finds numerous applications in the real-world. The significant realisation that this theoretical framework highlights is that SAT is not expected to yield a blanket quantum advantage, but within it lie islands of queasiness – special cases where quantum algorithms decisively win.

Algorithmic Utility

Finding a queasy instance is exciting in itself, but there is more to this story. Surprisingly, within the new framework it is demonstrated that when a quantum algorithm solves a queasy instance, it does much more than solve that single case. Because the program that solves it is so compact, the same program can provably solve an exponentially large set of other instances, as well. Interestingly, the size of this set depends exponentially on the queasiness of the instance!

Think of it like discovering a special shortcut through a maze. Once you’ve found the trick, it doesn’t just solve that one path, but reveals a pattern that helps you solve many other similarly built mazes, too (even if not optimally). This property is called algorithmic utility, and it means that queasy instances are not isolated curiosities. Each one can open a doorway to a whole corridor with other doors, behind which quantum advantage might lie.

A North Star for the Field

Queasy instances are more than a mathematical curiosity; this is a new framework that provides a language for quantum advantage. Even though the quantities defined in the paper are theoretical, involving Turing machines and viewing programs as abstract bitstrings, they can be approximated in practice by taking an experimental and engineering approach. This work serves as a foundation for pursuing quantum advantage by targeting problem instances and proving that in principle this can be a fruitful endeavour.

The researchers see a parallel with the rise of machine learning. The idea of neural networks existed for decades along with small scale analogue and digital implementations, but only when GPUs enabled large-scale trial and error did they explode into practical use. Quantum computing, they suggest, is on the cusp of its own heuristic era. ‾»łÜ°ůľ±˛őłŮľ±ł¦˛ő” will be prominent in finding queasy instances, which have the right structure so that classical methods struggle but quantum algorithms can exploit, to eventually arrive at solutions to typical real-world problems. After all, quantum computing is well-suited for small-data big-compute problems, and our framework employs the concepts to quantify that; instance complexity captures both their size and the amount of compute required to solve them.

Most importantly, queasy instances shift the conversation. Instead of asking the broad question of when quantum computers will surpass classical ones, we can now rigorously ask where they do. The queasy framework provides a language and a compass for navigating the rugged and jagged computational landscape, pointing researchers, engineers, and industries toward quantum advantage.

technical
All
Blog
September 15, 2025
Quantum World Congress 2025

From September 16th – 18th, (QWC) brought together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.

şÚÁĎÉç is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. With our quantum experts were on site, we showcased the latest on şÚÁĎÉç Systems, the world’s highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.

Highlights from QWC

Dr. Patty Lee Named the Industry Pioneer in Quantum

The Quantum Leadership Awards celebrate visionaries transforming quantum science into global impact. This year at QWC, Dr. Patty Lee, our Chief Scientist for Hardware Technology Development, was named the Industry Pioneer in Quantum! This honor celebrates her more than two decades of leadership in quantum computing and her pivotal role advancing the world’s leading trapped-ion systems. .

Keynote with şÚÁĎÉç's CEO, Dr. Rajeeb Hazra

At QWC 2024, şÚÁĎÉç’s President & CEO, Dr. Rajeeb “Raj” Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, Raj shared the progress we’ve made over the last year in advancing quantum computing on both commercial and technical fronts and exciting insights on what’s to come from şÚÁĎÉç. .

Panel Session: Policy Priorities for Responsible Quantum and AI

As part of the Track Sessions on Government & Security, şÚÁĎÉç’s Director of Government Relations, Ryan McKenney, discussed “Policy Priorities for Responsible Quantum and AI” with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.

Fireside Chat: Establishing a Pro-Innovation Regulatory Framework

During the Track Session on Industry Advancement, şÚÁĎÉç’s Chief Legal Officer, Kaniah Konkoly-Thege, and Director of Government Relations, Ryan McKenney, discussed the importance of “Establishing a Pro-Innovation Regulatory Framework”.

events
All