

By Ilyas Khan, Founder and Chief Product Officer, Jenni Strabley, Sr Director of Offering Management
All quantum error correction schemes depend for their success on physical hardware achieving high enough fidelity. If there are too many errors in the physical qubit operations, the error correcting code has the effect of amplifying rather than diminishing overall error rates. For decades now, it has been hoped that one day a quantum computer would achieve “three 9's” – an iconic, inherent 99.9% 2-qubit physical gate fidelity – at which point many of the error-correcting codes required for universal fault tolerant quantum computing would successfully be able to squeeze errors out of the system.
That day has now arrived. Building on several previous laboratory demonstrations , has become the first company ever to achieve “three 9's” in a commercially-available quantum computer, with the first demonstration of 99.914(3)% 2-qubit gate fidelity, showing repeatable performance across all qubit pairs on our H1-1 system that is constantly available to customers. This production-environment announcement is a marked difference to one-offs recorded in carefully contrived laboratory conditions. This demonstrates what will fast become the expected standard for the entire quantum computing sector.
is also announcing another milestone, a seven-figure Quantum Volume (QV) of 1,048,576 – or in terms preferred by the experts, 220 – reinforcing our commitment to building, by a significant margin, the highest-performing quantum computers in the world.
These announcements follow a historic month that started when we proved our ability to scale our systems to the sizes needed to solve some of the world’s most pressing problems – and in a way that offers the best path to universal quantum computing.
On March 5th, 2024, researchers disclosed details of our experiments that provide a solution to a totemic problem faced by all quantum computing architectures, known as the wiring problem. Supported by a video showing qubits being shuffled through a 2-dimensional grid ion-trap, our team presented concrete proof of the scalability of the quantum charge-coupled device (QCCD) architecture used in our H-Series quantum computers.
Stop-motion ion transport video showing a chosen sorting operation implemented on an 8-site 2D grid trap with the swap-or-stay primitive. The sort is implemented by discrete choices of swaps or stays between neighboring sites. The numbers shown (indicated by dashed circles) at the beginning and end of the video show the initial and final location of the ions after the sort, e.g. the ion that starts at the top left site ends at the bottom right site. The stop-motion video was collected by segmenting the primitive operation and pausing mid-operation such that Yb fluorescence could be detected with a CMOS camera exposure.
On April 3rd, 2024 in partnership with Microsoft, our teams announced a breakthrough in quantum error correction that delivered as its crowning achievement the most reliable logical qubits on record.
We revealed detailed demonstrations in an of the reliability achieved via 4 logical qubits encoded into just 30 physical qubits on our System Model H2 quantum computer. Our joint teams were able to demonstrate logical circuit error rates far below physical circuit error rates, a capability that our full-stack quantum computer is currently the only one in the world with the fidelity required to achieve.
Reaching this level of physical fidelity is not optional for commercial scale computers – it is essential for error correction to work, and that in turn is a necessary foundation for any useful quantum computer. Our record two-qubit gate fidelity of 99.914(3)% marks a symbolic inflection point for the industry: at ”three 9's” fidelity, we are nearing or surpassing the break-even point (where logical qubits outperform physical qubits) for many quantum error correction protocols, and this will generate great interest among research and industrial teams exploring fault-tolerant methods for tackling real-world problems.
Without hardware fidelity this good, error-corrected calculations are noisier than un-corrected computations. This is why we call it a “threshold” – when gate errors are “above threshold”, quantum computers will remain noisy no matter what you do. Below threshold, you can use quantum error correction to push error rates way, way down, so that quantum computers eventually become as reliable as classical computers.
Four years ago, claimed that it would improve the performance of its H-Series quantum computers by 10x each year for five years, when measured by the industry’s most widely recognized benchmark, QV (an industry standard not to be confused with less comprehensive metrics such as Algorithmic Qubits).
Today’s achievement of a 220 QV – which as with all our demonstrations was achieved on our commercially-available machine – shows that our team is living up to this audacious commitment. We are completely confident we can continue to overcome the technical problems that stand in the way of even better fidelity and QV performance. Our QV data is , as are
The combination of high QV and gate fidelities puts the system in a class by-itself – it is far and away the best of any commercially-available quantum computer.



Additionally, and notably, these benchmarks were achieved “inherently”, without error mitigation, thanks to the H Series’ all-to-all connectivity and QCCD architecture. Full connectivity results in less errors when running large, complicated circuits. While other modalities depend on error mitigation techniques, such techniques are not scalable and present only a modest near-term value.
Lower physical error and high connectivity means our quantum computers have a provably lower overhead for error-corrected computation.
Looking more deeply, experts look for high fidelities that are valid in all operating zones and between any pair of qubits. In contrast to our competitors, this is precisely what our H Series delivers. We do not suffer from a broad distribution of gate fidelities between different pairs of qubits, meaning that some pairs of qubits have significantly lower fidelities. is the only quantum computing company with all qubit pairs boasting above 99.9% fidelity.
Alongside these benefits and demonstrations of scalability, fidelity, connectivity, and reliability, it is worth noting how these features impact what arguably matters the most to users – time to solution. In the QCCD architecture, speed of operations is decoupled from speed to reach a computational solution thanks to a combination of:
The net effect is that for increasingly complex circuits it takes a high-fidelity QCCD-type quantum computer less time to achieve accurate results than other 2D connected or lower-fidelity architectures.
“Getting to three 9’s in the QCCD architecture means that ~1000 entangling operations can be done before an error occurs. Our quantum computers are right at the edge of being able to do computations at the physical level that are beyond the reach of classical computers, which would occur somewhere between 3 nines and 4 nines. Some tasks become hard for classical computers before this regime (e.g. Google’s random circuit sampling problem) but this new regime allows for much less contrived problems to be solved. At that point, these machines become real tools for new discoveries – albeit they will still be limited in what they can probe, likely to be physics simulations or closely related problems,” said Dave Hayes, a Senior R&D manager at .
“Additionally, these fidelities put us, some would say comfortably, within the regime needed to build fault-tolerant machines. These fidelities allow us to start adding more qubits without needing to improve performance further, and to take advantage of quantum error correction to improve the computational power necessary for tackling truly large problems. This scaling problem gets easier with even better fidelities (which is why we’re not satisfied with 3 nines) but it is possible in principle.”
’s new records in fidelity and quantum volume on our commercial H1 device are expected to be achieved on the H2, once upgrades are implemented, underscoring the value that we offer to users for whom stability, reliability and robust performance are pre-requisites. The quantum computing landscape is complex and changing, but we remain at the head of the pack in all key metrics. The relationship with our world-class applications teams means that co-designed devices for solving some of the world’s most intractable problems are a big step closer to reality.
is the world’s leading quantum computing company, and our world-class scientists and engineers are continually driving our technology forward while expanding the possibilities for our users. Their work on applications includes cybersecurity, quantum chemistry, quantum Monte Carlo integration, quantum topological data analysis, condensed matter physics, high energy physics, quantum machine learning, and natural language processing – and we are privileged to support them to bring new solutions to bear on some of the greatest challenges we face.
, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. ’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, leads the quantum computing revolution across continents.
ܳٳǰ:
(alphabetical order): Eric Brunner, Steve Clark, Fabian Finger, Gabriel Greene-Diniz, Pranav Kalidindi, Alexander Koziell-Pipe, David Zsolt Manrique, Konstantinos Meichanetzidis, Frederic Rapp
Hiverge (alphabetical order): Alhussein Fawzi, Hamza Fawzi, Kerry He, Bernardino Romera Paredes, Kante Yin
What if every quantum computing researcher had an army of students to help them write efficient quantum algorithms? Large Language Models are starting to serve as such a resource.
’s processors offer world-leading fidelity, and recent experiments show that they have surpassed the limits of classical simulation for certain computational tasks, such as simulating materials. However, access to quantum processors is limited and can be costly. It is therefore of paramount importance to optimise quantum resources and write efficient quantum software. Designing efficient algorithms is a challenging task, especially for quantum algorithms: dealing with superpositions, entanglement, and interference can be counterintuitive.
To this end, our joint team used AI platform for automated algorithm discovery, the Hive, to probe the limits of what can be done in quantum chemistry. The Hive generates optimised algorithms tailored to a given problem, expressed in a familiar programming language, like Python. Thus, the Hive’s outputs allow for increased interpretability, enabling domain experts to potentially learn novel techniques from the AI-discovered solutions. Such AI-assisted workflows lower the barrier of entry for non-domain experts, as an initial sketch of an algorithmic idea suffices to achieve state-of-the-art solutions.
In this initial proof-of-concept study, we demonstrate the advantage of AI-driven algorithmic discovery of efficient quantum heuristics in the context of quantum chemistry, in particular the electronic structure problem. Our early explorations show that the Hive can start from a naïve and simple problem statement and evolve a highly optimised quantum algorithm that solves the problem, reaching chemical precision for a collection of molecules. Our high-level workflow is shown in Figure 1. Specifically, the quantum algorithm generated by the Hive achieves a reduction in the quantum resources required by orders of magnitude compared to current state-of-the-art quantum algorithms. This promising result may enable the implementation of quantum algorithms on near-term hardware that was previously thought impossible due to current resource constraints.

The electronic structure problem is central to quantum chemistry. The goal is to prepare the ground state (the lowest energy state) of a molecule and compute the corresponding energy of that state to chemical precision or beyond. Classically, this is an exponentially hard problem. In particular, classical treatments tend to fall short when there are strong quantum effects in the molecule, and this is where quantum computers may be advantageous.
The paradigm of variational quantum algorithms is motivated by near-term quantum hardware. One starts with a relatively easy-to-prepare initial state. Then, the main part of the algorithm consists of a sequence of parameterised operators representing chemically meaningful actions, such as manipulating electron occupations in the molecular orbitals. These are implemented in terms of parameterised quantum gates. Finally, the energy of the state is measured via the molecule’s energy operator, the “Hamiltonian”, by executing the circuit on a quantum computer and measuring all the qubits on which the circuit is implemented. Taking many measurements, or “shots”, the energy is estimated to the desired precision. The ground state energy is found by iteratively optimising the parameters of the quantum circuit until the energy converges to a minimum value. The general form of such a variational quantum algorithm is illustrated in Figure 2.

The main challenge in these frameworks is to design an appropriate quantum circuit architecture, i.e. find an efficient sequence of operators, and an efficient optimisation strategy for its parameters. It is important to minimise the number of quantum operations in any given circuit, as each operation is inherently noisy and the algorithm’s output degrades exponentially. Another important quantum resource to be minimised is the total number of circuits that need to be evaluated to compute the energy values during the optimisation of the circuit parameters, which is time-consuming.
To meet these challenges, we task the Hive with designing a variational quantum algorithm to solve the ground state problem, following the workflow shown in Figure 1. The Hive is a distributed evolutionary process that evolves programs. It uses Large Language Models to generate mutations in the form of edits to an entire codebase. This genetic process selects the fittest programs according to how well they solve a given problem. In our case, the role of the quantum computer is to compute the fitness, i.e., the ground state energy. Importantly, the Hive operates at the level of a programming language; it readily imports and uses all known libraries that a human researcher would use, including ’s quantum chemistry platform, InQuanto. In addition, the Hive can accept instructions and requests in natural language, increasing its flexibility. For example, we encouraged it to seek parameter optimisation strategies that avoid estimating gradients, as this incurs significant overhead in terms of circuit evaluations. Intuitively, the interaction between a human scientist and the Hive is analogous to a supervisor and a group of eager and capable students: the supervisor provides guidance at a high level, and the students collaborate and flesh out the general idea to produce a working solution that the supervisor can then inspect.
We find that from an extremely basic starting point, consisting of a skeleton for a variational quantum algorithm, the Hive can autonomously assemble a bespoke variational quantum algorithm, which we call Hive-ADAPT. Specifically, the Hive evolves heuristic functions that construct a circuit as a sequence of quantum operators and optimise its parameters. Remarkably, the Hive converged on a structure resembling the current state-of-the-art, ADAPT-VQE. Crucially, however, Hive-ADAPT substantially outperforms this baseline, delivering significant improvements in chemical precision while reducing quantum resource requirements.

A molecule’s ground state energy varies with the distances between its atoms, called the “bond length”. For example, for the molecule H2O, the bond length refers to the length of the O-H bond. The Hive was tasked with developing an algorithm for a small set of bond lengths and reaching chemical precision, defined as within 1.6e-3 Hartree (Ha) of the ground state energy computed with the exact Full Configuration Interaction (FCI) algorithm. As we show in Figure 3, remarkably, Hive-ADAPT achieves chemical precision for more bond lengths than ADAPT-VQE. Furthermore, Hive-ADAPT also reaches chemical precision for other “unseen” bond lengths, showcasing the generalisation ability of the evolved quantum algorithm. Our results were obtained from classical simulations of the quantum algorithms, where we used NVIDIA CUDA-Q to leverage the parallelism enabled by GPUs. Further, relative to ADAPT-VQE, Hive-ADAPT exhibits one to two orders of magnitude reduction in quantum resources, such as the number of circuit evaluations and the number of operators used to construct circuits, which is crucial for practical implementations on actual near-term processors.
For molecules such as BeH2 at large Be-H bond lengths, a complex initial state is required for the algorithm to be able to reach the ground state using the available operators. Even in these cases, by leveraging an efficient state preparation scheme implemented in InQuanto, the Hive evolved a dedicated strategy for the preparation of such a complex initial state, given a set of basic operators to achieve the desired chemical precision.
To validate Hive-ADAPT under realistic conditions, we employed ’s H2 Emulator, which provides a faithful classical simulator of the H2 quantum computer, characterised by a 1.05e-3 two-qubit gate error rate. Leveraging the Hive's inherent flexibility, we adapted the optimisation strategy to explicitly penalise the number of two-qubit gates—the dominant noise source on near-term hardware—by redefining the fitness function. This constraint guided the Hive to discover a noise-aware algorithm capable of constructing hardware-efficient circuits. We subsequently executed the specific circuit generated by this algorithm for the LiH molecule at a bond length of 1.5 Å with the Partition Measurement Symmetry Verification (PMSV) error mitigation procedure. The resulting energy of -7.8767 ± 0.0031 Ha, obtained using 10,000 shots per circuit with a discard rate below 10% in the PMSV error mitigation procedure, is close to the target FCI energy of -7.8824 Ha and demonstrates the Hive's ability to successfully tailor algorithms that balance theoretical accuracy with the rigorous constraints of hardware noise and approach chemical precision as much as possible with current quantum technology.
For illustration purposes, we show an example of an elaborate code snippet evolved by the Hive starting from a trivial version:
’s in-house quantum chemistry expert, Dr. David Zsolt Manrique, commented,
“I found it amazing that the Hive converged to a domain-expert level idea. By inspecting the code, we see it has identified the well-known perturbative method, ‘MP2’, as a useful guide; not only for setting the initial circuit parameters, but also for ordering excitations efficiently. Further, it systematically and laboriously fine-tuned those MP2-inspired heuristics over many iterations in a way that would be difficult for a human expert to do by hand. It demonstrated an impressive combination of domain expertise and automated machinery that would be useful in exploring novel quantum chemistry methods.”
In this initial proof-of-concept collaborative study between and Hiverge, we demonstrate that AI-driven algorithm discovery can generate efficient quantum heuristics. Specifically, we found a great reduction in quantum resources, which is impactful for quantum algorithmic primitives that are frequently reused. Importantly, this approach is highly flexible; it can accommodate the optimisation of any desired quantum resource, from circuit evaluations to the number of operations in a given circuit. This work opens a path toward fully automated pipelines capable of developing problem-specific quantum algorithms optimised for NISQ as well as future hardware.
An important question for further investigation regards transferability and generalisation of a discovered quantum solution to other molecules, going beyond the generalisation over bond lengths of the same molecule that we have already observed. Evidently, this approach can be applied to improving any other near-term quantum algorithm for a range of applications from optimisation to quantum simulation.
We have already demonstrated an error-corrected implementation of quantum phase estimation on quantum hardware, and an AI-driven approach promises further hardware-tailored improvements and optimal use of quantum resources. Beyond NISQ, we envision that AI-assisted algorithm discovery will be a fruitful endeavour in the fault-tolerant regime, as well, where high-level quantum algorithmic primitives (quantum fourier transform, amplitude amplification, quantum signal processing, etc.) are to be combined optimally to achieve computational advantage for certain problems.
Notably, we’ve entered an era where quantum algorithms can be written in high-level programming languages, like ’s , and approaches that integrate Large Language Models directly benefit. Automated algorithm discovery is promising for improving routines relevant to the full quantum stack, for example, in low-level quantum control or in quantum error correction.
is focusing on redefining what’s possible in hybrid quantum–classical computing by integrating ’s best-in-class systems with high-performance NVIDIA accelerated computing to create powerful new architectures that can solve the world’s most pressing challenges.
The launch of Helios, Powered by Honeywell, the world’s most accurate quantum computer, marks a major milestone in quantum computing. Helios is now available to all customers through the cloud or on-premise deployment, launched with a go-to-market offering that seamlessly pairs Helios with the , targeting specific end markets such as drug discovery, finance, materials science, and advanced AI research.
We are also working with NVIDIA to adopt , an open system architecture, as a standard for advancing hybrid quantum-classical supercomputing. Using this technology with Guppy and the , has implemented NVIDIA accelerated computing across Helios and future systems to perform real-time decoding for quantum error correction.
In an industry-first demonstration, an NVIDIA GPU-based decoder integrated in the Helios control engine improved the logical fidelity of quantum operations by more than 3% — a notable gain given Helios’ already exceptionally low error rate. These results demonstrate how integration with NVIDIA accelerated computing through NVQLink can directly enhance the accuracy and scalability of quantum computation.

This unique collaboration spans the full technology stack. ’s next-generation software development environment allows users to interleave quantum and GPU-accelerated classical computations in a single workflow. Developers can build hybrid applications using tools such as NVIDIA CUDA-Q, , and ’s Guppy, to make advanced quantum programming accessible to a broad community of innovators.
The collaboration also reaches into applied research through the (NVAQC), where an NVIDIA GB200 NVL72 supercomputer can be paired with ’s Helios to further drive hybrid quantum-GPU research, including the development of breakthrough quantum-enhanced AI applications.
A recent achievement illustrates this potential: The ADAPT-GQE framework, a transformer-based Generative Quantum AI (GenQAI) approach, uses a Generative AI model to efficiently synthesize circuits to prepare the ground state of a chemical system on a quantum computer. Developed by , NVIDIA, and a pharmaceutical industry leader—and leveraging NVIDIA CUDA-Q with GPU-accelerated methods—ADAPT-GQE achieved a 234x speed-up in generating training data for complex molecules. The team used the framework to explore imipramine, a molecule crucial to pharmaceutical development. The transformer was trained on imipramine conformers to synthesize ground state circuits at orders of magnitude faster than ADAPT-VQE, and the circuit produced by the transformer was run on Helios to prepare the ground state using InQuanto, 's computational chemistry platform.
From collaborating on hardware and software integrations to GenQAI applications, the collaboration between and NVIDIA is building the bridge between classical and quantum computing and creating a future where AI becomes more expansive through quantum computing, and quantum computing becomes more powerful through AI.
By Dr. Noah Berthusen
The earliest works on quantum error correction showed that by combining many noisy physical qubits into a complex entangled state called a "logical qubit," this state could survive for arbitrarily long times. QEC researchers devote much effort to hunt for codes that function well as "quantum memories," as they are called. Many promising code families have been found, but this is only half of the story.
Being able to keep a qubit around for a long time is one thing, but to realize the theoretical advantages of quantum computing we need to run quantum circuits. And to make sure noise doesn't ruin our computation, these circuits need to be run on the logical qubits of our code. This is often much more challenging than performing gates on the physical qubits of our device, as these "logical gates" often require many physical operations in their implementation. What's more, it often is not immediately obvious which logical gates a code has, and so converting a physical circuit into a logical circuit can be rather difficult.
Some codes, like the famous , are good quantum memories and also have easy logical gates. The drawback is that the ratio of physical qubits to logical qubits (the "encoding rate") is low, and so many physical qubits are required to implement large logical algorithms. High-rate codes that are good quantum memories have also been found, but computing on them is much more difficult. The holy grail of QEC, so to speak, would be a high-rate code that is a good quantum memory and also has easy logical gates. Here, we make progress on that front by developing a new code with those properties.
A recent work from QEC researchers introduced . The underlying construction method for these codes, called the "symplectic double cover," also provided a way to obtain logical gates that are well suited for 's QCCD architecture. Namely, these "SWAP-transversal" gates are performed by applying single qubit operations and relabeling the physical qubits of the device. Thanks to the all-to-all connectivity facilitated through qubit movement on the QCCD architecture, this relabeling can be done in software essentially for free. Combined with extremely high fidelity (~1.2 x10-5) single-qubit operations, the resulting logical gates are similarly high fidelity.
Given the promise of these codes, we take them a step further in our . We combine the symplectic double codes with the [[4,2,2]] Iceberg code using a procedure called "code concatenation". A concatenated code is a bit like nesting dolls, with an outer code containing codes within it---with these too potentially containing codes. More technically, in a concatenated code the logical qubits of one code act as the physical qubits of another code.
The new codes, which we call "concatenated symplectic double codes", were designed in such a way that they have many of these easily-implementable SWAP-transversal gates. Central to its construction, we show how the concatenation method allows us to "upgrade" logical gates in terms of their ease of implementation; this procedure may provide insights for constructing other codes with convenient logical gates. Notably, the SWAP-transversal gate set on this code is so powerful that only two additional operations (logical T and S) are necessary for universal computation. Furthermore, these codes have many logical qubits, and we also present numerical evidence to suggest that they are good quantum memories.
Concatenated symplectic double codes have one of the easiest logical computation schemes, and we didn’t have to sacrifice rate to achieve it. Looking forward in our roadmap, we are targeting hundreds of logical qubits at ~ 1x 10-8 logical error rate by 2029. These codes put us in a prime position to leverage the best characteristics of our hardware and create a device that can achieve real commercial advantage.