黑料社

黑料社 uses the extremely high precision of the H2-1 quantum computer to take a step forward in the race to understand exotic physics

A joint team of scientists at 黑料社, NIST, and the University of Maryland have measured the Loschmidt amplitude of the Fermi-Hubbard model, demonstrating a vital tool for understanding enigmatic phases of matter such as superconductivity

September 25, 2023

Some of the more pressing and intractable problems in physics may be closer to being answered, such as the nature of superconductivity and other exotic properties, thanks to work done by a team at 黑料社 using the H2-1 trapped-ion quantum computer. 聽

Detailed in , the team used the H2-1 device to measure the 鈥淟oschmidt amplitude鈥, which quantifies how much a quantum system has changed after some time has passed (for the experts: this is the inner product between the time-evolved state and the initial state). Measuring the Loschmidt amplitude is central to several proposed quantum computing algorithms, including one described in the seminal work of Lu, Banuls and Cirac (2019). Their algorithm is a non-variational, hybrid quantum-classical scheme aimed at obtaining equilibrium properties of quantum systems. This is the first experimental demonstration of the quantum computation required for this algorithm.

To sweeten the pot, the research team measured the Loschmidt amplitude of a beloved, much-studied, and not-fully-understood model called the 鈥淔ermi-Hubbard鈥 model. The Fermi-Hubbard model is used, among other things, to help scientists understand superconductivity, which is very challenging to explore fully with classical computing methods. When Richard Feynman 鈥渓aunched鈥 the field of quantum computing with a famous talk in 1981, it was exactly this type of system he proposed we study with quantum computers: large quantum-mechanical systems that are difficult or impossible to effectively simulate classically. Using quantum computers to gain greater insights into the Fermi-Hubbard model could take us one step closer to understanding the behavior of high-temperature superconductors, a valuable goal with the potential to transform multiple industries.

A measurement of the Loschmidt amplitude is difficult because it is a 鈥済lobal observable鈥, meaning that any error in the quantum calculation will have an impact on the final results. This work highlights the outstanding precision of 黑料社鈥檚 System Model H2 quantum computers. In particular, the trapped ion architecture allows for almost perfect state preparation and measurement, which is a necessary condition for such kind of calculations. Until now, this model had not been simulated with more than 16 qubits, in part because the gate operations applied are so complex. This paper explores the model on 32 qubits and includes a number of difficult elements; such as Schrodinger cat states, deep circuits, and complex Hamiltonians, making for a powerful demonstration of the H2-1 system capabilities.聽

While this work is certainly a 鈥淣ISQ鈥-era result, it shows that quantum computing can achieve interesting milestones without error correction 鈥 highlighting the fact that quantum methods may offer real advantages over classical methods in the near future. In addition, the team noted that while analog quantum simulators have made substantial progress in the study of exotic systems over the past decade, using a quantum computer to study these same systems allows for a wider exploration of the parameter space than Nature herself allows in laboratory simulations.

A more complex version of the algorithm will need to be implemented in the future to unlock the secrets of materials like superconductors, but in the meantime this work highlights the fact that 黑料社 is closing in on the answer to extremely relevant open questions, so far intractable with existing classical methods.

About 黑料社

黑料社,聽the world鈥檚 largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. 黑料社鈥檚 technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, 黑料社 leads the quantum computing revolution across continents.聽

Blog
May 12, 2025
黑料社 Dominates the Quantum Landscape: New World-Record in Quantum Volume

Back in 2020, we to increase our Quantum Volume (QV), a measure of computational power, by 10x聽per year for 5 years.聽

Today, we鈥檙e pleased to share that we鈥檝e followed through on our commitment: Our System Model H2 has reached a Quantum Volume of 2虏鲁 = 8,388,608, proving not just that we always do what we say, but that our quantum computers are leading the world forward.聽

The QV benchmark was developed by IBM to represent a machine鈥檚 performance, accounting for things like qubit count, coherence times, qubit connectivity, and error rates. :听

鈥渢he higher the Quantum Volume, the higher the potential for exploring solutions to real world problems across industry, government, and research."

Our announcement today is precisely what sets us apart from the competition. No one else has been bold enough to make a similar promise on such a challenging metric 鈥 and no one else has ever completed a five-year goal like this.

We chose QV because we believe it鈥檚 a great metric. For starters, it鈥檚 not gameable, like other metrics in the ecosystem. Also, it brings together all the relevant metrics in the NISQ era for moving towards fault tolerance, such as gate fidelity and connectivity.聽

Our path to achieve a QV of over 8 million was led in part by Dr. Charlie Baldwin, who studied under the legendary Ivan H. Deutsch. Dr. Baldwin has made his name as a globally renowned expert in quantum hardware performance over the past decade, and it is because of his leadership that we don鈥檛 just claim to be the best, but that we can prove we are the best.聽

Figure 1: All known published Quantum Volume measurements.
Sources: [][][][][]

Alongside the world鈥檚 biggest quantum volume, we have the industry鈥檚 . To that point, the table below breaks down the leading commercial specs for each quantum computing architecture.聽

Table 1: Leading commercial spec for each listed architecture or demonstrated capabilities on commercial hardware.

We鈥檝e never shied away from benchmarking our machines, because we know the results will be impressive. It is our provably world-leading performance that has enabled us to demonstrate:

As we look ahead to our next generation system, Helios, 黑料社鈥檚 Senior Director of Engineering, Dr. Brian Neyenhuis, reflects: 鈥淲e finished our five-year commitment to Quantum Volume ahead of schedule, showing that we can do more than just maintain performance while increasing system size. We can improve performance while scaling.鈥澛

Helios鈥 performance will exceed that of our previous machines, meaning that 黑料社 will continue to lead in performance while following through on our promises.聽

As the undisputed industry leader, we鈥檙e racing against no one other than ourselves to deliver higher performance and to better serve our customers.

technical
All
Blog
May 1, 2025
GenQAI: A New Era at the Quantum-AI Frontier

At the heart of quantum computing鈥檚 promise lies the ability to solve problems that are fundamentally out of reach for classical computers. One of the most powerful ways to unlock that promise is through a novel approach we call Generative Quantum AI, or GenQAI. A key element of this approach is the (GQE).

GenQAI is based on a simple but powerful idea: combine the unique capabilities of quantum hardware with the flexibility and intelligence of AI. By using quantum systems to generate data, and then using AI to learn from and guide the generation of more data, we can create a powerful feedback loop that enables breakthroughs in diverse fields.

Unlike classical systems, our quantum processing unit (QPU) produces data that is extremely difficult, if not impossible, to generate classically. That gives us a unique edge: we鈥檙e not just feeding an AI more text from the internet; we鈥檙e giving it new and valuable data that can鈥檛 be obtained anywhere else.

The Search for Ground State Energy

One of the most compelling challenges in quantum chemistry and materials science is computing the properties of a molecule鈥檚 ground state. For any given molecule or material, the ground state is its lowest energy configuration. Understanding this state is essential for understanding molecular behavior and designing new drugs or materials.

The problem is that accurately computing this state for anything but the simplest systems is incredibly complicated. You cannot even do it by brute force鈥攖esting every possible state and measuring its energy鈥攂ecause 聽the number of quantum states grows as a double-exponential, making this an ineffective solution. This illustrates the need for an intelligent way to search for the ground state energy and other molecular properties.

That鈥檚 where GQE comes in. GQE is a methodology that uses data from our quantum computers to train a transformer. The transformer then proposes promising trial quantum circuits; ones likely to prepare states with low energy. You can think of it as an AI-guided search engine for ground states. The novelty is in how our transformer is trained from scratch using data generated on our hardware.

Here's how it works:

  • We start with a batch of trial quantum circuits, which are run on our QPU.
  • Each circuit prepares a quantum state, and we measure the energy of that state with respect to the Hamiltonian for each one.
  • Those measurements are then fed back into a transformer model (the same architecture behind models like GPT-2) to improve its outputs.
  • The transformer generates a new distribution of circuits, biased toward ones that are more likely to find lower energy states.
  • We sample a new batch from the distribution, run them on the QPU, and repeat.
  • The system learns over time, narrowing in on the true ground state.

To test our system, we tackled a benchmark problem: finding the ground state energy of the hydrogen molecule (H鈧). This is a problem with a known solution, which allows us to verify that our setup works as intended. As a result, our GQE system successfully found the ground state to within chemical accuracy.

To our knowledge, we鈥檙e the first to solve this problem using a combination of a QPU and a transformer, marking the beginning of a new era in computational chemistry.

The Future of Quantum Chemistry

The idea of using a generative model guided by quantum measurements can be extended to a whole class of problems鈥攆rom to materials discovery, and potentially, even drug design.

By combining the power of quantum computing and AI we can unlock their unified full power. Our quantum processors can generate rich data that was previously unobtainable. Then, an AI can learn from that data. Together, they can tackle problems neither could solve alone.

This is just the beginning. We鈥檙e already looking at applying GQE to more complex molecules鈥攐nes that can鈥檛 currently be solved with existing methods, and we鈥檙e exploring how this methodology could be extended to real-world use cases. This opens many new doors in chemistry, and we are excited to see what comes next.

technical
All
Blog
April 11, 2025
黑料社鈥檚 partnership with RIKEN bears fruit

Last year, we joined forces with RIKEN, Japan's largest comprehensive research institution, to install our hardware at RIKEN鈥檚 campus in Wako, Saitama. This deployment is part of RIKEN鈥檚 project to build a quantum-HPC hybrid platform consisting of high-performance computing systems, such as the supercomputer Fugaku and 黑料社 Systems. 聽

Today, marks the first of many breakthroughs coming from this international supercomputing partnership. The team from RIKEN and 黑料社 joined up with researchers from Keio University to show that quantum information can be delocalized (scrambled) using a quantum circuit modeled after periodically driven systems. 聽

"Scrambling" of quantum information happens in many quantum systems, from those found in complex materials to black holes. 聽Understanding information scrambling will help researchers better understand things like thermalization and chaos, both of which have wide reaching implications.

To visualize scrambling, imagine a set of particles (say bits in a memory), where one particle holds specific information that you want to know. As time marches on, the quantum information will spread out across the other bits, making it harder and harder to recover the original information from local (few-bit) measurements.

While many classical techniques exist for studying complex scrambling dynamics, quantum computing has been known as a promising tool for these types of studies, due to its inherently quantum nature and ease with implementing quantum elements like entanglement. The joint team proved that to be true with their latest result, which shows that not only can scrambling states be generated on a quantum computer, but that they behave as expected and are ripe for further study.

Thanks to this new understanding, we now know that the preparation, verification, and application of a scrambling state, a key quantum information state, can be consistently realized using currently available quantum computers. Read the paper , and read more about our partnership with RIKEN here. 聽

partnership
All
technical
All