şÚÁĎÉç

Qubits in Qatar

By Rajeeb Hazra

May 16, 2025

I continue to be inspired by our team's pioneering efforts to redefine what’s possible through quantum computing. With more than 550 dedicated employees, we’re constantly pushing the boundaries to uncover meaningful applications for this transformative technology.

This week marked one of my proudest moments: the announcement of a joint venture with Al Rabban Capital to accelerate the commercial adoption of quantum technology in Qatar and the Gulf region. This partnership lays the groundwork for up to USD $1 billion in investment from Qatar over the next decade in şÚÁĎÉç’s state-of-the-art quantum technologies, co-development of quantum computing applications tailored to regional needs, and workforce development. This collaboration is a major step forward in our strategy to expand our commercial reach through long-term, strategic alliances that foster economic growth in both the U.S. and Qatar.

I had the unique opportunity to attend a business roundtable in Doha with President Trump, U.S. and Qatari policymakers, and other industry leaders. The conversation centered on the importance of U.S.-Qatari relations and the role of shared commercial interests in strengthening that bond.

A recurring theme was innovation in Artificial Intelligence (AI), reinforcing the role that hybrid quantum-classical systems will play in enhancing AI capabilities across sectors. By integrating quantum computing, AI, and high-performance computing, we can unlock powerful new use cases critical to economic growth and national security. 

We also addressed the growing energy demands of AI-powered data centers. Quantum computing offers a potential path forward here, as well. Our H2-1 system has demonstrated an estimated 30,000x reduction in power consumption compared to classical supercomputers, making it a highly efficient tool for solving complex computational challenges.

What struck me most about the conversations in Qatar was the emphasis on cooperation over competition. While quantum is often framed as a race, our partnership with Al Rabban Capital underscores the value of cross-border collaboration. As I noted in a recent co-authored with Honeywell CEO Vimal Kapur, quantum computing isn’t just a technology—it’s a national capability. Countries that lead will shape how it is regulated, protected, and deployed. Our joint venture and this week’s dialogue reaffirm that both the U.S. and Qatar are taking the necessary first steps to lead in this space. Yet much work remains.

I believe we’re witnessing the emergence of a new kind of global alliance—one rooted not just in trade, but in shared technological advancement. Quantum computing holds the promise to unlock innovative solutions that will tackle challenges that have long been beyond reach. Realizing that promise will require visionary leadership, global collaboration, and a bold commitment to shaping the future together.

I was honored to attend today’s roundtable during the President’s State Visit to Qatar and to see our announcement featured as part of that engagement. This milestone reflects a shared commitment by the U.S. and Qatar to strengthen strategic ties, spur bilateral investment in future-defining industries, and foster technological leadership and shared prosperity. 

şÚÁĎÉç’s expansion into the Gulf region, starting with Qatar, follows our successful growth in the U.S., U.K., Europe and Indo-Pacific. We will continue working across borders and sectors to accelerate the commercial adoption of quantum computing and realize quantum’s full potential—for the benefit of all!

Details of the JV are available in this link, along with the .

Onward and Upward,
Rajeeb Hazra

About şÚÁĎÉç

şÚÁĎÉç, the world’s largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. şÚÁĎÉç’s technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, şÚÁĎÉç leads the quantum computing revolution across continents. 

Blog
June 10, 2025
Our Hardware is Now Running Quantum Transformers!

If we are to create ‘next-gen’ AI that takes full advantage of the power of quantum computers, we need to start with quantum native transformers. Today we announce yet again that şÚÁĎÉç continues to lead by demonstrating concrete progress — advancing from theoretical models to real quantum deployment.

The future of AI won't be built on yesterday’s tech. If we're serious about creating next-generation AI that unlocks the full promise of quantum computing, then we must build quantum-native models—designed for quantum, from the ground up.

Around this time last year, we introduced Quixer, a state-of-the-art quantum-native transformer. Today, we’re thrilled to announce a major milestone: one year on, Quixer is now running natively on quantum hardware.

Why this matters: Quantum AI, born native

This marks a turning point for the industry: realizing quantum-native AI opens a world of possibilities.

Classical transformers revolutionized AI. They power everything from ChatGPT to real-time translation, computer vision, drug discovery, and algorithmic trading. Now, Quixer sets the stage for a similar leap — but for quantum-native computation. Because quantum computers differ fundamentally from classical computers, we expect a whole new host of valuable applications to emerge.  

Achieving that future requires models that are efficient, scalable, and actually run on today’s quantum hardware.

That’s what we’ve built.

What makes Quixer different?

Until Quixer, quantum transformers were the result of a brute force “copy-paste” approach: taking the math from a classical model and putting it onto a quantum circuit. However, this approach does not account for the considerable differences between quantum and classical architectures, leading to substantial resource requirements.

Quixer is different: it’s not a translation – it's an innovation.

With Quixer, our team introduced an explicitly quantum transformer, built from the ground up using quantum algorithmic primitives. Because Quixer is tailored for quantum circuits, it's more resource efficient than most competing approaches.

As quantum computing advances toward fault tolerance, Quixer is built to scale with it.

What’s next for Quixer?

We’ve already deployed Quixer on real-world data: genomic sequence analysis, a high-impact classification task in biotech. We're happy to report that its performance is already approaching that of classical models, even in this first implementation.

This is just the beginning.

Looking ahead, we’ll explore using Quixer anywhere classical transformers have proven to be useful; such as language modeling, image classification, quantum chemistry, and beyond. More excitingly, we expect use cases to emerge that are quantum-specific, impossible on classical hardware.

This milestone isn’t just about one model. It’s a signal that the quantum AI era has begun, and that şÚÁĎÉç is leading the charge with real results, not empty hype.

Stay tuned. The revolution is only getting started.

technical
All
Blog
June 9, 2025
Join us at ISC25

Our team is participating in (ISC 2025) from June 10-13 in Hamburg, Germany!

As quantum computing accelerates, so does the urgency to integrate its capabilities into today’s high-performance computing (HPC) and AI environments. At ISC 2025, meet the şÚÁĎÉç team to learn how the highest performing quantum systems on the market, combined with advanced software and powerful collaborations, are helping organizations take the next step in their compute strategy.

şÚÁĎÉç is leading the industry across every major vector: performance, hybrid integration, scientific innovation, global collaboration and ease of access.

  • Our industry-leading quantum computer holds the record for performance with a Quantum Volume of 2²³ = 8,388,608 and the highest fidelity on a commercially available QPU available to our users every time they access our systems.
  • Our systems have been validated by a #1 ranking against competitors in a recent benchmarking study by JĂźlich Research Centre.
  • We’ve laid out a clear roadmap to reach universal, fully fault-tolerant quantum computing by the end of the decade and will launch our next-generation system, Helios, later this year.
  • We are advancing real-world hybrid compute with partners such as RIKEN, NVIDIA, SoftBank, STFC Hartree Center and are pioneering applications such as our own GenQAI framework.
Exhibit Hall

From June 10–13, in Hamburg, Germany, visit us at Booth B40 in the Exhibition Hall or attend one of our technical talks to explore how our quantum technologies are pushing the boundaries of what’s possible across HPC.

Presentations & Demos

Throughout ISC, our team will present on the most important topics in HPC and quantum computing integration—from near-term hybrid use cases to hardware innovations and future roadmaps.

Multicore World Networking Event

  • ‍Monday, June 9 | 7:00pm – 9:00 PM at Hofbräu Wirtshaus Esplanade
    ‍
    In partnership with Multicore World, join us for a şÚÁĎÉç-sponsored Happy Hour to explore the present and future of quantum computing with şÚÁĎÉç CCO, Dr. Nash Palaniswamy, and network with our team.

H1 x CUDA-Q Demonstration

  • ‍All Week at Booth B40
    ‍
    We’re showcasing a live demonstration of NVIDIA’s CUDA-Q platform running on şÚÁĎÉç’s industry-leading quantum hardware. This new integration paves the way for hybrid compute solutions in optimization, AI, and chemistry.
    ‍Register for a demo

HPC Solutions Forum

  • ‍Wednesday, June 11 | 2:20 – 2:40 PM
    ‍
    “Enabling Scientific Discovery with Generative Quantum AI” – Presented by Maud Einhorn, Technical Account Executive at şÚÁĎÉç, discover how hybrid quantum-classical workflows are powering novel use cases in scientific discovery.
See You There!

Whether you're exploring hybrid solutions today or planning for large-scale quantum deployment tomorrow, ISC 2025 is the place to begin the conversation.

We look forward to seeing you in Hamburg!

events
All
Blog
May 27, 2025
Teleporting to new heights

şÚÁĎÉç has once again raised the bar—setting a record in teleportation, and advancing our leadership in the race toward universal fault-tolerant quantum computing.

Last year, we demonstrating the first-ever fault-tolerant teleportation of a logical qubit. At the time, we outlined how crucial teleportation is to realize large-scale fault tolerant quantum computers. Given the high degree of system performance and capabilities required to run the protocol (e.g., multiple qubits, high-fidelity state-preparation, entangling operations, mid-circuit measurement, etc.), teleportation is recognized as an excellent measure of system maturity.

Today we’re building on last year’s breakthrough, having recently achieved a record logical teleportation fidelity of 99.82% – up from 97.5% in last year’s result. What’s more, our logical qubit teleportation fidelity now exceeds our physical qubit teleportation fidelity, passing the break-even point that establishes our H2 system as the gold standard for complex quantum operations.

Figure 1: Fidelity of two-bit state teleportation for physical qubit experiments and logical qubit experiments using the d=3 color code (Steane code). The same QASM programs that were ran during March 2024 on the şÚÁĎÉç's H2-1 device were reran on the same device on April to March 2025. Thanks to the improvements made to H2-1 from 2024 to 2025, physical error rates have been reduced leading to increased fidelity for both the physical and logical level teleportation experiments. The results imply a logical error rate that is 2.3 times smaller than the physical error rate while being statistically well separated, thus indicating the logical fidelities are below break-even for teleportation.

This progress reflects the strength and flexibility of our Quantum Charge Coupled Device (QCCD) architecture. The native high fidelity of our QCCD architecture enables us to perform highly complex demonstrations like this that nobody else has yet to match. Further, our ability to perform conditional logic and real-time decoding was crucial for implementing the Steane error correction code used in this work, and our all-to-all connectivity was essential for performing the high-fidelity transversal gates that drove the protocol.

Teleportation schemes like this allow us to “trade space for time,” meaning that we can do quantum error correction more quickly, reducing our time to solution. Additionally, teleportation enables long-range communication during logical computation, which translates to higher connectivity in logical algorithms, improving computational power.

This demonstration underscores our ongoing commitment to reducing logical error rates, which is critical for realizing the promise of quantum computing. şÚÁĎÉç continues to lead in quantum hardware performance, algorithms, and error correction—and we’ll extend our leadership come the launch of our next generation system, Helios, in just a matter of months.

technical
All