Our next-generation quantum computer, Helios, will come online this year as more than a new chip. It will arrive as a full-stack platform that sets a new standard for the industry.
With our current and previous generation systems, H2 and H1, we have set industry records for the highest fidelities, pioneered the teleportation of logical qubits, and introduced the worldâs first commercial application for quantum computers. Much of this success stems from the deep integration between our software and hardware.
Today, we are excited to share the details of our new software stack. Its features and benefits, outlined below, enable a lower barrier to entry, faster time-to-solution, industry-standard access, and the best possible user experience on Helios.
Most importantly, this stack is designed with the future in mind as şÚÁĎÉç advances toward universal, fully fault-tolerant quantum computing.
Register for our September 18th webinar on our new software stack
Our Current Generation Software Stack
Currently, the solutions our customers explore on our quantum hardware, which span cybersecurity, quantum chemistry, and quantum AI, plus third-party programs, are all powered by two middleware technologies:Â
Our Next Generation Software Stack
The launch of Helios will come with an upgraded software stack with new features. Weâre introducing two key additions to the stack, specifically:
Moving forward, users will now leverage Guppy to run software applications on Helios and our future systems. TKET will be used solely as a compiler tool chain and for the optimization of Guppy programs.
Nexus, which remains as the default pathway to access our hardware, and third-party hardware, has been upgraded to support Guppy and provide access to Selene. Nexus also supports Quantum Intermediate Representation (QIR), an industry standard, which enables developers to program with languages like , ensuring our stack stays accessible to the whole ecosystem.
With this new stack running on our next generation Helios system, several benefits will be delivered to the end user, including, but not limited to, improved time-to-solution and reduced memory error for programs critical to quantum error correction and utility-scale algorithms.
Below, we dive deeper into these upgrades and what they mean for our customers.
â
â
Designed for the Next Era of Quantum Computing
Guppy is a new programming language hosted in Python, providing developers with a familiar, accessible entry point into the next era of quantum computing.
As şÚÁĎÉç leads the transition from the noisy intermediate scale quantum (NISQ) era to fault-tolerant quantum computing, represents a fundamental departure from legacy circuit-building tools. Instead of forcing developers to construct programs gate-by-gate, a tedious and error-prone process, Guppy treats quantum programs as structured, dynamic software.
With native support for real-time feedback and common programming constructs like âifâ statements and âforâloops, Guppy enables developers to write complex, readable programs that adapt as the quantum system evolves. This approach unlocks unprecedented power and clarity, far surpassing traditional tools.
Designed with fault-tolerance in mind, Guppy also optimizes qubit resource management automatically, improving efficiency and reducing developer overhead.
All Guppy programs can be seamlessly submitted and managed through Nexus, our all-in-one quantum computing platform.
Find out more at
The Most Flexible Approach to Quantum Error Correction
When it comes to quantum error correction (QEC), flexibility is everything. That is why we designed Guppy to reduce barriers to entry to access necessary features for QEC.
Unlike platforms locked into rigid, hardware-specific codes, şÚÁĎÉçâs QCCD architecture gives developers the freedom to implement any QEC code. In a rapidly evolving field, this adaptability is critical: the ability to test and deploy the latest techniques can mean the difference between achieving quantum advantage and falling behind.
With Guppy, developers can implement advanced protocols such as magic state distillation and injection, quantum teleportation, and other measurement-based routines, all executed dynamically through our real-time control system. This creates an environment where researchers can push the limits of fault-tolerance nowânot years from now.
In addition, users can employ NVIDIAâs CUDA-QX for out-of-the-box QEC, without needing to worry about writing their own decoders, simplifying the development of novel QEC codes.
By enabling a modular, programmable approach to QEC, our stack accelerates the path to fault-tolerance and positions us to scale quickly as more efficient codes emerge from the research frontier.
Real-Time Control for True Quantum Computing
Integrated seamlessly with Guppy is a next-generation control system powered by a new real-time engine, a key breakthrough for large-scale quantum computing.
This control layer makes our software stack the first commercial system to deliver full measurement-dependent control with undefined sequence length. In practical terms, that means operations can now be guided dynamically by quantum measurements as they occurâa critical step toward truly adaptive, fault-tolerant algorithms.
At the hardware level, features like real-time transport enable dynamic software capabilities, such as conditionals, loops, and recursion, which are all foundational for scaling from thousands to millions of qubits.
These advances deliver tangible performance gains, including faster time-to-solution, reduced memory error, and greater algorithmic efficiency, providing the foundational support required to convert algorithmic advances into useful real-world applications.
Quantum hardware access is limited, but development shouldn't be. Selene is our new open-source emulator, built to model realistic, entangled quantum behavior with exceptional detail and speed.
Unlike generic simulators, Selene captures advanced runtime behavior unique to Helios, including measurement-dependent control flow and hybrid quantum-classical logic. It runs Guppy programs out of the box, allowing developers to start building and testing immediately without waiting for machine time. Â
supports multiple simulation backends, giving users state-of-the-art options for their specific needs, including backends optimized for matrix product state and tensor network simulations using NVIDIA GPUs and cuQuantum. This ensures maximum performance both on the quantum processor and in simulation.
These new features, and more, are available through Nexus, our all-in-one quantum computing platform.
Nexus serves as the middle layer that connects every part of the stack, providing a cloud-native SaaS environment for full-stack workflows, including server-side Selene instances. Users can manage Guppy programs, analyze results, and collaborate with others, all within a single, streamlined platform.
Further, Selene users who submit quantum state-vector simulationsâthe most complete and powerful method to simulate a general quantum circuit on a classical computerâthrough Nexus will be leveraging the NVIDIA cuQuantum library for efficient GPU-powered simulation.
Our entire stack, including Nexus and Selene, supports the industry-standard Quantum Intermediate Representation (QIR) as input, allowing users to program in their preferred programming language. QIR provides a common format for accessing a range of quantum computing backends, and şÚÁĎÉç Helios will support the full Adaptive Profile QIR This means developers can generate programs for Helios using tools like NVIDIA CUDA-Q, Microsoft Q#, and ORNL XACC.
Our customers choose şÚÁĎÉç as their top quantum computing partner because no one else matches our team or our results. We remain the leaders in quantum computing and the only provider of integrated quantum resources that will address our societyâs most complex problems.
That future is already taking shape. With Helios and our new software stack, we are building the foundation for scalable, programmable, real-time quantum computing.
şÚÁĎÉç, the worldâs largest integrated quantum company, pioneers powerful quantum computers and advanced software solutions. şÚÁĎÉçâs technology drives breakthroughs in materials discovery, cybersecurity, and next-gen quantum AI. With over 500 employees, including 370+ scientists and engineers, şÚÁĎÉç leads the quantum computing revolution across continents.Â
From September 16th â 18th, (QWC) will bring together visionaries, policymakers, researchers, investors, and students from across the globe to discuss the future of quantum computing in Tysons, Virginia.
şÚÁĎÉç is forging the path to universal, fully fault-tolerant quantum computing with our integrated full-stack. Join our quantum experts for the below sessions and at Booth #27 to discuss the latest on şÚÁĎÉç Systems, the worldâs highest-performing, commercially available quantum computers, our new software stack featuring the key additions of Guppy and Selene, our path to error correction, and more.
Keynote with şÚÁĎÉç's CEO, Dr. Rajeeb Hazra
9:00 â 9:20am ET | Main Stage
At QWC 2024, şÚÁĎÉçâs President & CEO, Dr. Rajeeb âRajâ Hazra, took the stage to showcase our commitment to advancing quantum technologies through the unveiling of our roadmap to universal, fully fault-tolerant quantum computing by the end of this decade. This year at QWC 2025, join Raj on the main stage to discover the progress weâve made over the last year in advancing quantum computing on both commercial and technical fronts and be the first to hear exciting insights on whatâs to come from şÚÁĎÉç.
Panel Session:Â Policy Priorities for Responsible Quantum and AI
1:00 â 1:30pm ET | Maplewood Hall
As part of the Track Sessions on Government & Security, şÚÁĎÉçâs Director of Government Relations, Ryan McKenney, Â will discuss âPolicy Priorities for Responsible Quantum and AIâ with Jim Cook from Actions to Impact Strategies and Paul Stimers from Quantum Industry Coalition.
Fireside Chat:Â Establishing a Pro-Innovation Regulatory Framework
4:00 â 4:30pm ET | Vault Theater
During the Track Session on Industry Advancement, şÚÁĎÉçâs Chief Legal Officer, Kaniah Konkoly-Thege, Â and Director of Government Relations, Ryan McKenney, Â will take the stage to discuss the importance of âEstablishing a Pro-Innovation Regulatory Frameworkâ.
In the world of physics, ideas can lie dormant for decades before revealing their true power. What begins as a quiet paper in an academic journal can eventually reshape our understanding of the universe itself.
In 1993, nestled deep in the halls of Yale University, physicist Subir Sachdev and his graduate student Jinwu Ye stumbled upon such an idea. Their work, originally aimed at unraveling the mysteries of âspin fluidsâ, would go on to ignite one of the most surprising and profound connections in modern physicsâa bridge between the strange behavior of quantum materials and the warped spacetime of black holes.
Two decades after the paper was published, it would be pulled into the orbit of a radically different domain: quantum gravity. Thanks to work by renowned physicist Alexei Kitaev in 2015, the model found new life as a testing ground for the mind-bending theory of holographyâthe idea that the universe we live in might be a projection, from a lower-dimensional reality.
Holography is an exotic approach to understanding reality where scientists use holograms to describe higher dimensional systems in one less dimension. So, if our world is 3+1 dimensional (3 spatial directions plus time), there exists a 2+1, or 3-dimensional description of it. In the words of Leonard Susskind, a pioneer in quantum holography, "the three-dimensional world of ordinary experienceâthe universe filled with galaxies, stars, planets, houses, boulders, and peopleâis a hologram, an image of reality coded on a distant two-dimensional surface." Â
The âSYKâ model, as it is known today, is now considered a quintessential framework for studying strongly correlated quantum phenomena, which occur in everything from superconductors to strange metalsâand even in black holes. In fact, The SYK model has also been used to study one of physicsâ true final frontiers, quantum gravity, with the authors of the paper calling it âa paradigmatic model for quantum gravity in the lab.â Â
The SYK model involves Majorana fermions, a type of particle that is its own antiparticle. A key feature of the model is that these fermions are all-to-all connected, leading to strong correlations. This connectivity makes the model particularly challenging to simulate on classical computers, where such correlations are difficult to capture. Our quantum computers, however, natively support all-to-all connectivity making them a natural fit for studying the SYK model.
Now, 10 years after Kitaevâs watershed lectures, weâve made new progress in studying the SYK model. In a new paper, . By exploiting our systemâs native high fidelity and all-to-all connectivity, as well as our scientific teamâs deep expertise across many disciplines, we were able to study the SYK model at a scale three times larger than the previous best experimental attempt.
While this work does not exceed classical techniques, it is very close to the classical state-of-the-art. The biggest ever classical study was done on 64 fermions, while our recent result, run on our smallest processor (System Model H1), included 24 fermions. Modelling 24 fermions costs us only 12 qubits (plus one ancilla) making it clear that we can quickly scale these studies: our System Model H2 supports 56 qubits (or ~100 fermions), and Helios, which is coming online this year, will have over 90 qubits (or ~180 fermions).
However, working with the SYK model takes more than just qubits. The SYK model has a complex Hamiltonian that is difficult to work with when encoded on a computerâquantum or classical. Studying the real-time dynamics of the SYK model means first representing the initial state on the qubits, then evolving it properly in time according to an intricate set of rules that determine the outcome. This means deep circuits (many circuit operations), which demand very high fidelity, or else an error will occur before the computation finishes.
Our cross-disciplinary team worked to ensure that we could pull off such a large simulation on a relatively small quantum processor, laying the groundwork for quantum advantage in this field.
First, the team adopted a to run the simulation. By using random sampling, among other methods, the TETRIS algorithm allows one to compute the time evolution of a system without the pernicious discretization errors or sizable overheads that plague other approaches. TETRIS is particularly suited to simulating the SYK model because with a high level of disorder in the material, simulating the SYK Hamiltonian means averaging over many random Hamiltonians. With TETRIS, one generates random circuits to compute evolution (even with a deterministic Hamiltonian). Therefore, when applying TETRIS on SYK, for every shot one can just generate a random instance of the Hamiltonain, and generate a random circuit on TETRIS at the same time. This simple approach enables less gate counts required per shot, meaning users can run more shots, naturally mitigating noise.
In addition, the team âsparsifiedâ the SYK model, which means âpruningâ the fermion interactions to reduce the complexity while still maintaining its crucial features. By combining sparsification and the TETRIS algorithm, the team was able to significantly reduce the circuit complexity, allowing it to be run on our machine with high fidelity.
They didnât stop there. The team also proposed two new noise mitigation techniques, ensuring that they could run circuits deep enough without devolving entirely into noise. The two techniques both worked quite well, and the team was able to show that their algorithm, combined with the noise mitigation, performed significantly better and delivered more accurate results. The perfect agreement between the circuit results and the true theoretical results is a remarkable feat coming from a co-design effort between algorithms and hardware.
As we scale to larger systems, we come closer than ever to realizing quantum gravity in the lab, and thus, answering some of scienceâs biggest questions.
At şÚÁĎÉç, we pay attention to every detail. From quantum gates to teleportation, we work hard every day to ensure our quantum computers operate as effectively as possible. This means not only building the most advanced hardware and software, but that we constantly innovate new ways to make the most of our systems.
A key step in any computation is preparing the initial state of the qubits. Like lining up dominoes, you first need a special setup to get meaningful results. This process, known as state preparation or âstate prep,â is an open field of research that can mean the difference between realizing the next breakthrough or falling short. Done ineffectively, state prep can carry steep computational costs, scaling exponentially with the qubit number.
Recently, our algorithm teams have been tackling this challenge from all angles. Weâve published three new papers on state prep, covering state prep for chemistry, materials, and fault tolerance.
In the , our team tackled the issue of preparing states for quantum chemistry. Representing chemical systems on gate-based quantum computers is a tricky task; partly because you often want to prepare multiconfigurational states, which are very complex. Preparing states like this can cost a lot of resources, so our team worked to ensure we can do it without breaking the (quantum) bank.
To do this, our team investigated two different state prep methods. The first method uses , implemented to save computational costs. The second method exploits the sparsity of the molecular wavefunction to maximize efficiency.
Once the team perfected the two methods, they implemented them in InQuanto to explore the benefits across a range of applications, including calculating the ground and excited states of a strongly correlated molecule (twisted C_2 H_4). The results showed that the âsparse state preparationâ scheme performed especially well, requiring fewer gates and shorter runtimes than alternative methods.
In the , our team focused on state prep for materials simulation. Generally, itâs much easier for computers to simulate materials that are at zero temperature, which is, obviously, unrealistic. Much more relevant to most scientists is what happens when a material is not at zero temperature. In this case, you have two options: when the material is steadily at a given temperature, which scientists call thermal equilibrium, or when the material is going through some change, also known as out of equilibrium. Both are much harder for classical computers to work with.
In this paper, our team looked to solve an outstanding problem: there is no standard protocol for preparing thermal states. In this work, our team only targeted equilibrium states but, interestingly, they used an out of equilibrium protocol to do the work. By slowly and gently evolving from a simple state that we know how to prepare, they were able to prepare the desired thermal states in a way that was remarkably insensitive to noise.
Ultimately, this work could prove crucial for studying materials like superconductors. After all, no practical superconductor will ever be used at zero temperature. In fact, we want to use them at room temperature â and approaches like this are what will allow us to perform the necessary studies to one day get us there.
Finally, as we advance toward the fault-tolerant era, we encounter a new set of challenges: making computations fault-tolerant at every step can be an expensive venture, eating up qubits and gates. In the , our team made fault-tolerant state preparationâthe critical first step in any fault-tolerant algorithmâroughly twice as efficient. With our new âflag at originâ technique, gate counts are significantly reduced, bringing fault-tolerant computation closer to an everyday reality.
The method our researchers developed is highly modular: in the past, to perform optimized state prep like this, developers needed to solve one big expensive optimization problem. In this new work, weâve figured out how to break the problem up into smaller pieces, in the sense that one now needs to solve a set of much smaller problems. This means that now, for the first time, developers can prepare fault-tolerant states for much larger error correction codes, a crucial step forward in the early-fault-tolerant era.
On top of this, our new method is highly general: it applies to almost any QEC code one can imagine. Normally, fault-tolerant state prep techniques must be anchored to a single code (or a family of codes), making it so that when you want to use a different code, you need a new state prep method. Now, thanks to our teamâs work, developers have a single, general-purpose, fault-tolerant state prep method that can be widely applied and ported between different error correction codes. Like the modularity, this is a huge advance for the whole ecosystemâand is quite timely given our recent advances into true fault-tolerance.
This generality isnât just applicable to different codes, itâs also applicable to the states that you are preparing: while other methods are optimized for preparing only the |0> state, this method is useful for a wide variety of states that are needed to set up a fault tolerant computation. This âstate diversityâ is especially valuable when working with the best codes â codes that give you many logical qubits per physical qubit. This new approach to fault-tolerant state prep will likely be the method used for fault-tolerant computations across the industry, and if not, it will inform new approaches moving forward.
From the initial state preparation to the final readout, we are ensuring that not only is our hardware the best, but that every single operation is as close to perfect as we can get it.